Five years Integrated M.Sc. Mathematics (Semester - 2)
Assessment Policy
(060090205) CC3 Advanced Calculus (Theory - 4 Credits)

Assessment Code	Assessment Type	Duration of each	Occurrence	Each of marks	Weightage in CIE of 40 marks	Remarks
A1	Unit Test	90 minutes	2	30	$7 \times 2=14$	Unit Test - 1: After completion of Unit-1 and Sub Units 2.1, 2.2, 2.3 and 2.4 Unit Test - 2: After completion of Sub Units 2.5, 2.6, 2.7, 2.8, 2.9 and Unit - 3.
A2	Internal Examination	180 minutes	1	60	$14 \times 1=14$	After completion of Unit-4, which covers all units.
A3	Assignment	10 days	5	10	$1 \times 5=5$	Assignment - 1 : After completion of Unit-1 Assignment - 2 : After completion of Unit-2 Assignment - 3 : After completion of Unit-3 Assignment - 4 : After completion of Unit-4 Assignment-5 : over all
A4	Viva	1 hour	1	40	$7 \times 1=7$	Based on the application of Numerical Analysis

Assessment Type Classification:

Assessment Code :	A1	Coverage of Content :	Unit Test - 1: Covers Unit-1 and Sub Units 2.1, 2.2, Unit Test - 2: Covers Sub Units 2.3, 2.4,
Assessment Type:	Unit Test-1 and Unit Test-2	Tentative Date :	
Kind of Question Format:	Que. 1) Long Questions (Any three out of four, each of 5 marks) Que. 2) Long Questions (Any three out of four, each of 5 marks)		
Assessment :	Formative		

Assessment Code:	A2	Coverage of Content:	All Units
Assessment Type:	Internal Examination	Tentative Date :	
Kind of Question Format:	Que. 1) Long Questions (Any three out of four, each of 5 marks) Que. 2) Long Questions (Any three out of four, each of 5 marks) Que. 3) Long Questions (Any three out of four, each of 5 marks) Que. 4) Long Questions (Any three out of four, , each of 5 marks)		
Assessment:	Summative		
Assessment Code :	A3	Coverage of Content :	Assignment - 1 : After completion of Unit-1 Assignment-2 : After completion of Unit-2 Assignment - 3 : After completion of Unit-3 Assignment - 4 : After completion of Unit-4
Assessment Type :	Assignment	Tentative Date :	Assignment-1: Assignment-2: Assignment-3: Assignment-4:
Kind of Question Format:	1. Per method two examples have to solve. 2. Questions will be given on regular bases of completion of particular method. 3. Assignment has to be submitted after two days of completion of whole unit. 4. Zero mark will be given for submission after given deadline.		
Assessment:	Formative		
Assessment Code:	A4	Coverage of Content:	All Units
Assessment Type:	Viva	Tentative Date:	
Kind of Question Format:	1. 10-12 basic and short type of question asked to each student from any unit with equal weightage. 2. Marks will be given on the basis of knowledge share.		
Assessment :	Summative		

$\begin{aligned} & \text { Five years Integrated M.Sc. Mathematics (Semester - 7) } \\ & \text { Assessment Policy } \\ & \text { (060090205) CC3 Advanced Calculus (Practical - } 2 \text { Credits) } \end{aligned}$						
Assessment Code	Assessment Type	Duration of each	Occurrence	Each of marks	Weightage in CIE of 40 marks	Remarks
A5	Practical Examination	120 minutes	2	20	$10 \times 2=20$	Practical - 1: After completion of Unit-1 and Unit-2 Practical - 2: After completion of Unit-3 and Unit-4

Assessment Code :	A5	Coverage of Content:	Practical - 1: After completion of Unit-1 and Unit-2
		Practical - 2: After completion of Unit-3 and Unit-4	
Assessment Type :	Practical Examination	Practical - 1: Practical - 2:	
Kind of Question Format:	1. Practical Programme (1 out of 2, each of 10 Marks) 2. Journal Submission (5 Marks) 3. Viva Voce (5 Marks)		
Assessment:	Formative		

Course outcomes: Upon completion of the course, students shall be able to

C01: familiar with the ideas of the limit, Analyze continuity and discontinuity of functions of several variables.
CO2: obtain the expansion of the function of two variables by, Taylor's and Maclaurins series for two variables.
CO3: define Error and Approximation, Jacobians, Extreme values of function of two variables and Lagrange's methods of undetermined multipliers.
C04: interpret the vector quantity and its properties like gradient, divergence, curl and different operation of vector function.
CO5: compute the Line Integrals, Surface Integral, Volume integral of vector function.
C06: understand the Green's, Gauss and Stoke's theorem \& application of these theorem in finding the integration values.

Programme Outcomes (PO)
Mr.Mihir Panchal

P01: Knowledge

Provides knowledge about the fundamentals of pure, applied and computing mathematics and its applications to students that creates the opportunities in industries and research centers.

PO2: Core Competence

Creates competency in science and mathematics to formulate, analyses and solve problem and/or also to pursue advanced study or research.

P03: Breadth

Trains students having good knowledge in unearth core of academia and industry by the roots of mathematics.

P04: Evaluation

Imparts in students to raise trial and error-based curiosity and problem-solving functionality with research based advanced tutorial for higher level decision makings tools.

Programme Outcomes and Course Outcomes mapping:

Programme Outcomes							
	Course outcomes						
P01	\checkmark	CO2	C03	C04	CO5	C06	
P02		\checkmark					
P03	\checkmark	\checkmark			\checkmark		
P04			\checkmark				

