

DEPARTMENT OF MATHEMATICS

Semester : IV

Integrated M.Sc. Mathematics

Academic Year : 2016-17

Subject : 060090407 GE4 Application of Algebra

Teaching Schedule

Course Objectives: To apply concepts of Algebra for solving real world problems and to conclude value of different areas of science.

Unit	Sub Unit	No. of Lect.(s)	Topics	Reference Chapter/ Additional Reading	Teaching Methodology to be used		
Unit 1	: Balaı	nced Inco	omplete Block Designs (BIBD)		[17]		
	1.1	2	Definitions and results				
	1.2	3	Incidence matrix of a BIBD	Ch#2			
1	1.3	3	Construction of BIBD from	Cn#2 Topics in Applied Abstract Algebra S. R. Nagpaul & S. K. Jain	Chalk & Talk		
			difference sets				
	1.4	1.4 3	Construction of BIBD using				
	4 5		quadratic residues				
	1.5	3	Difference set families				
	1.6	3	Lonstruction of BIBD from finite fields.		[4 E]		
			Unit 2: Coding Theory		[15]		
	2.1	1	Introduction to error correcting	Ch#3			
	2.2	2	Linear codec				
2	2.2	2	Concretor and parity check metrices	Abstract Algebra	Chaik & Talk		
	2.3 2.4	2 2	Minimum distance	S R Nagnaul & S V			
	2.4	2	Hamming Codes	5. K. Nagpaul & S. K. Jain			
	2.5	3	Decoding and cyclic codes	Juin			
Unit 3	• Svmr	J notry Ci	rouns and Colour Patterns		[12]		
ome 5	31	2	Beview of permutation groups				
3	5.1	<u> </u>	Groups of symmetry and action of a	Ch#5			
	3.2	2	group on a set	Topics in Applied	Chalk & Talk		
	3.3	3	Colouring and colouring patterns	Abstract Algebra			
	3.4	3	Polya theorem and pattern inventory	S. R. Nagpaul & S. K.			
	2 5	2	Generating functions for non-	Jain			
	3.5	3	isomorphic graphs.				
Unit 4	: Speci	ial Types	s of Matrices		[20]		
	<u>4</u> 1	2	Idempotent, Nilpotent, Involution, and				
	4.1	<u> </u>	Projection tri diagonal matrices	Ch#4 Matrix theory Fuzhen Zhang			
	4.2	2	Circulant matrices, Vandermonde				
4		-	matrices, Hadamard matrices				
	4.3	3	Permutation and doubly stochastic				
			matrices				
	4.4	3	theorem		Chalk & Talk		
			Positive Semi-definite matrices:				
	4.5	4	positive semi-definite matrices, square				
			root of apositive semi-definite matrix.				
			a pair of positive semi-definite				
			matrices, and their simultaneous				
			diagonalization				
	4.6	6	Symmetric matrices and quadratic				
Uk	Uka Tarsadia University						
Ma	Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road-394350						

DEPARTMENT OF MATHEMATICS

Semester: IV

Integrated M.Sc. Mathematics

Academic Year : 2016-17

Subject: 060090407 GE4 Application of Algebra

	forms: diagonalization of symmetric	
	matrices, quadratic forms, constrained	
	optimization, singular value	
	decomposition, and applications to	
	image processing and statistics	

Text books:

- 1. S. R. Nagpaul and S. K. Jain, Topics in Applied Abstract Algebra, Thomson Brooks and Cole, Belmont, 2005.
- 2. I. N. Herstein and D. J. Winter, Primer on Linear Algebra, Macmillan Publishing Company, New York, 1990.

Reference books:

- 1. Richard E. Klima, Neil Sigmon, Ernest Stitzinger, Applications of Abstract Algebra with Maple, CRC Press LLC, Boca Raton, 2000.
- 2. David C. Lay, Linear Algebra and its Applications. 3rd Ed., Pearson Education Asia, Indian Reprint, 2007.
- 3. Fuzhen Zhang, Matrix theory, Springer-Verlag New York, Inc., New York, 1999

