Semester - II: 60090205-CC3 Advanced Calculus

Question Bank

Unit-1	Partial differentiation
[A]	5 - Marks Questions
1.	Explain the following terms: a) Limit for functions of two variables. b) Continuous function of two variables.
2.	Explain the following terms: a) Partial derivative. b) Homogenous function of partial differentiation
3.	Find the limits of the following: a) $\lim _{(x, y) \rightarrow(2,1)} \frac{x y}{x^{2}+y^{2}}$ b) $\lim _{(x, y) \rightarrow(3,4)} \sqrt{x^{2}+y^{2}-1}$
4.	Check whether the given limit is exists or not $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y+y z^{2}+x z^{2}}{x^{2}+y^{2}+z^{2}}$
5.	Check whether the given functions are homogenous or not? a) $u=f(x, y)=x^{3}+y^{3}+2 x^{2} y$ b) $u=f(x, y)=\left(y^{2}+4 x y\right)^{\frac{3}{2}}$
6.	Write the statement of Modified Euler's theorem. Write the statement of Euler's theorem.
7.	If $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{e}^{\mathrm{x}+\mathrm{y}+\mathrm{z}}$ find $\frac{\partial \mathrm{f}}{\partial \mathrm{x}}, \frac{\partial \mathrm{f}}{\partial \mathrm{y}}$
8.	If $\mathrm{f}(\mathrm{p}, \mathrm{q})=\tan ^{-1} \frac{\mathrm{q}}{\mathrm{p}}$ find $\frac{\partial \mathrm{f}}{\partial \mathrm{p}}, \frac{\partial \mathrm{f}}{\partial \mathrm{q}}$
9.	Find $\mathrm{F}_{\mathrm{x}}, \mathrm{F}_{\mathrm{y}}$ for $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=1+\mathrm{xy}^{2}-2 \mathrm{z}$
10.	Find the value of $\frac{\partial f}{\partial x}$ at the point $(4,-5)$ if $f(x, y)=x^{2}+3 x y+y-1$.
11.	If resistor of R_{1}, R_{2} and R_{3} ohms are connected in parallel to make on R ohm resistor, the value of R can be found the equation $\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}$ find the value of $\frac{\partial \mathrm{R}}{\partial \mathrm{R}_{2}}$ when $\mathrm{R}_{1}=30, \mathrm{R}_{2}=45, \mathrm{R}_{3}=90 \mathrm{ohms}$.
12.	Express $\frac{d z}{d u}, \frac{d z}{d v}$ as function of u and v both by using chain rule also evaluate $\frac{d z}{d u}$ and $\frac{d z}{d v}$ at the given point $(u, v) . z=4 e^{x} \log y$, where $x=\log (u \cos v)$ and $y=u \operatorname{sinv}$
13.	If $u=\log \left(x^{2}+y^{2}\right)$ prove that $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$.
14.	If $u=x^{3}+y^{3}+z^{3}+3 x y z$, find (i) f_{x}, (ii) $f_{x x}$, (iii) $f_{x y z}$
15.	Prove that $\mathrm{x} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\mathrm{y} \frac{\partial \mathrm{u}}{\partial \mathrm{y}}=0$ for $\mathrm{u}=\tan ^{-1}\left(\frac{\mathrm{x}}{\mathrm{y}}\right)$

Semester - II : 60090205 - CC3 Advanced Calculus

16. If $u=x^{3}+y^{3}-3 a x y$, prove that $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$
17. \quad Find $f_{y x y z}$ if $f(x, y, z)=1-2 x y^{2} z+x^{2} y$.
18.

If $u=\frac{x^{2}+y^{2}}{x+y}$ then prove that $\left(\frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}\right)^{2}=4\left(1-\frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}\right)$
19.

If $u=\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}$ prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=-u$
20. If $u=f(r)$ where $r^{2}=x^{2}+y^{2}$, prove that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f^{\text {II }}(r)+\frac{1}{r} f^{I}(r)$
21. If $u=\log \left(x^{2}+y^{2}+z^{2}\right)$, show that $x \frac{\partial^{2} u}{\partial y \partial z}=y \frac{\partial^{2} u}{\partial z \partial x}$
22. If $u=x^{2} y+y^{2} z+z^{2} x$, prove that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=2(x+y+z)$
23. Find the value of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point $(1,1,1)$ if $z^{3}-x y+y z+y^{3}-2=0$
24. If $w=\log \left(x^{2}+y^{2}+z^{2}\right)$ where
$x=\cos t, y=\sin t, z=4 \sqrt{t}$. Find $\frac{d w}{d t}$ at the point $t=3$.
25. Verify Euler's theorem for a function $u=\sin ^{-1} \frac{x}{y}+\tan ^{-1} \frac{y}{x}$.
26. Verify Euler's theorem for a function $u=(\sqrt{x}+\sqrt{y})\left(x^{n}+y^{n}\right)$
27. If $u=\frac{x^{2}+y^{2}}{\sqrt{x+y}}$ then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial x}=\frac{3}{2} u$
28. If $u=\frac{1}{x^{2}}+\frac{1}{x y}+\frac{\log x-\log y}{x^{2}+y^{2}}$ then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=-2 u$
29. If $u=\cos \left(\frac{x y+y z+z x}{x^{2}+y^{2}+z^{2}}\right)$ then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$
30. If $u=\left(\frac{x}{y}+\frac{y}{x}+\frac{z}{x}\right)^{n}$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$
31. If $u=x^{2} y \sin ^{-1}\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}\right)$ then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3 u$
32. If $u=x^{4} y \sin ^{-1} \frac{x}{y}$, find the value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$.
33. If $u=x^{2} \tan ^{-1}\left(\frac{y}{x}\right)+y^{2} \sin ^{-1}\left(\frac{x}{y}\right)$ then prove that $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=2 u$
34. If $u=x+y+(x+y) f\left(\frac{y}{x}\right)$ then prove that $x\left(\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial x \partial y}\right)=y\left(\frac{\partial^{2} u}{\partial y^{2}}-\frac{\partial^{2} u}{\partial x \partial y}\right)$
35.

If $u=x^{n} f\left(\frac{y}{x}\right)+y^{-n} \emptyset\left(\frac{x}{y}\right)$ then $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=n^{2} u$.
36. If $x=e^{u} \tan v$ and $y=e^{u} \sec v$ then find the value of $\left(x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}\right) \cdot\left(x \frac{\partial v}{\partial x}+y \frac{\partial v}{\partial y}\right)$
37. $u=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x-y}\right)$ show that $\left(x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}\right)=\sin 2 u$

Semester - II: 60090205-CC3 Advanced Calculus

38.	If $u=\sin ^{-1}\left(\frac{x^{\frac{1}{4}}+y^{\frac{1}{4}}}{x^{\frac{1}{5}}+y^{\frac{1}{5}}}\right)$ then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{20} \tan u$
39.	If $u=\operatorname{cosec}^{-1}\left(\frac{x+y}{x^{2}+y^{2}}\right)$ show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\tan u$
40.	If $u=\sin ^{-1}\left(\frac{\frac{1}{4}+\frac{1}{4}}{x^{\frac{1}{6}}+y^{\frac{1}{6}}}\right)$ then prove that $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=\frac{1}{144} \tan \left(\tan ^{2} u-1\right)$
41.	$u=\tan ^{-1}\left(x^{2}+2 y^{2}\right) \text { show that } x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=2 \cos 3 u \sin u$
42.	State and prove the Euler's theorem
43.	State and prove the Modified Euler's theorem
44.	State and prove the Taylor's theorem.
45.	Expand $\mathrm{e}^{\text {ax }}$ sin by in power of x and y .
46.	Expand e^{x} cosy in power of ($\left.\mathrm{x}-1\right)$ and $\left(\mathrm{y}-\frac{\pi}{4}\right)$.
47.	Expand $\mathrm{x}^{2} \mathrm{y}+3 \mathrm{y}-2$ in the neighborhood of the point (1,-2).
48.	Expand $\sin (\mathrm{x}+\mathrm{h})(\mathrm{y}+\mathrm{k})$ by Taylor's series.
Unit-2	Applications of Partial Differentiation
[A]	5 - Marks Questions
1.	Explain the following terms: Tangent plane Normal line
2.	Explain the following terms: Jacobian Absolute maximum
3.	Explain the following terms: Absolute minimum Strict maximum
4.	Write the formula of tangent plane Write the formula of normal line.
5.	Find the tangent plane and normal line to the surface $f(x, y, z)=x^{2}+y^{2}+z-9=0 a$ circular parabolied at the point $p_{0}(1,2,4)$.
6.	Find the tangent plane and normal line at P_{0} on the given surface (1) $x^{2}-4 y^{2}+3 z^{2}+4=0$ at the point $(3,2,1)$ (2) $\cos \pi x-x^{2} y+e^{x z}+y z=4$ at the point $(1,1,-1)$
7.	If $f(x, y, z)=x^{2} y+2 z^{2}=8$ at point $(3,2,1)$
8.	If measurement of radius of base and height of a right circular cone are incorrect by -1% and 2%, prove that there is no error in the volume.
9.	The period of a simple pendulum is given by $T=2 \pi \sqrt{\frac{1}{g}}$. If Tis found using $\mathrm{l}=8 \mathrm{ft} ., \mathrm{g}=32 \mathrm{ft} / \mathrm{sec}^{2}$, find an approximate error in T if the correct values are

Semester - II: 60090205-CC3 Advanced Calculus

	$\mathrm{l}=8.05 \mathrm{ft} ., \mathrm{g}=32.01 \mathrm{ft} / \mathrm{sec}^{2}$
10.	A balloon is in the shape of a right circular cylinder of radius 3 m and length 6 m , and is surmounted by hemispherical ends. If the radius is increased by $1 \% \mathrm{~m}$ and the length by $5 \% \mathrm{~m}$, find the percentage increase in the volume of a balloon.
11.	Obtain the percentage error in the area of an ellipse when an error of 1 percentage is made in measuring the semi major and semi minor axes.
12.	The H.P. required to propel a steamer varies as the cube of the velocity and the square of length. If there is 3% increase in velocity and 4% increase in length, find the corresponding percentage increase in H.P.
13.	If $x=r \cos \theta$ and $y=r \sin \theta$, find $\frac{\partial(x, y)}{\partial(r, \theta)}$ and $\frac{\partial(r, \theta)}{\partial(x, y)}$
14.	If $u=\frac{x+y}{1-x y}$ and $v=\tan ^{-1} x+\tan ^{-1} y$, find $\frac{\partial(u, v)}{\partial(x, y)}$.
15.	If $x=r \sin \theta \cos \emptyset, y=r \sin \theta \sin \emptyset, z=r \cos \theta$, find $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}$.
16.	If $u=2 x y, v=x^{2}-y^{2}, x=r \cos \theta, y=r \sin \theta$ find $\frac{\partial(u, v)}{\partial(x, y)} \cdot \frac{\partial(x, y)}{\partial(r, \theta)}$
17.	If $\mathrm{x}=\mathrm{e}^{\mathrm{u}} \sec \mathrm{v}, \mathrm{y}=\mathrm{e}^{\mathrm{u}} \tan \mathrm{v}$ then, prove that $\mathrm{J} \cdot \mathrm{J}^{\mathrm{I}}=1$.
18.	If $\mathrm{x}=\mathrm{v}^{2}+\mathrm{w}^{2}, \mathrm{y}=\mathrm{w}^{2}+\mathrm{u}^{2}, \mathrm{z}=\mathrm{u}^{2}+\mathrm{v}^{2}$, prove that $\mathrm{J} \cdot \mathrm{J}^{1}=1$.
19.	If $u=x y z, v=x^{2}+y^{2}+z^{2}, w=x+y+z$, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.
20.	$\begin{aligned} & \text { If } x=\sqrt{v w}, y=\sqrt{w u}, z=\sqrt{u v} \text { and } \\ & u=r \sin \theta \cos \emptyset, v=r \sin \theta \sin \varnothing \\ & w=r \cos \theta, \text { find } \frac{\partial(x, y, z)}{\partial(r, \theta, \emptyset)} \end{aligned}$
21.	If $\mathrm{x}=\mathrm{e}^{\mathrm{u}} \operatorname{secv}, \mathrm{y}=\mathrm{e}^{\mathrm{y}} \operatorname{tanv}$ then prove that $\mathrm{J} \cdot \mathrm{J}^{\mathrm{I}}=1$
22.	If $u=2 x y, v=x^{2}-y^{2}$ and $x=r \cos \theta, y=r \sin \theta$ find $\frac{\partial(u, v)}{\partial(r, \theta)}$
23.	Find the stationary value of $\mathrm{x}^{3}+y^{3}-3 \mathrm{axy}, \mathrm{a}>0$. Also find the extremum values.
24.	Find the extreme value of $\mathrm{x}^{2}+\mathrm{y}^{2}+6 \mathrm{x}+12$.
25.	Find the extreme value of $\mathrm{x}^{3}+3 \mathrm{xy}{ }^{2}-3 \mathrm{x}^{2}-3 y^{2}+4$.
26.	For $f(x, y)=x^{3}+y^{3}-3 x y$, examine the extremum values.
27.	Find the maximum and minimum values of $\begin{aligned} & x^{3}+y^{3}-63(x+y)+12 x y \\ & x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x \\ & x^{2} y^{2}-5 x^{2}-8 x y-5 y^{2} \\ & \hline \end{aligned}$
Unit-3	Vectors Functions
[A]	1 - Mark Questions
1.	Define tangent vector
2.	Define normal plane
3.	Define unit tangent vector.
4.	Define normal vector.
5.	Define binormal vector.
6.	Define field

Semester - II : 60090205 - CC3 Advanced Calculus

7.	Define Scalar point function
8.	Define vector point function.
9.	Define gradient.
10.	Define curvature
11.	Define osculating plane
12.	Define Torsion
[B]	3 - Marks Questions
1.	$\text { If } \bar{r}=a(\sin \omega t) \hat{\imath}+b(\sin \omega t) \hat{\jmath}+\frac{c t}{\omega^{2}}(\sin \omega t) \hat{k}, \text { prove that } \frac{d^{2} \bar{r}}{d t^{2}}+\omega^{2} \bar{r}=\frac{2 c}{\omega}(\cos \omega t) \hat{k} .$
2.	Verify the $\frac{d}{d t}(\bar{A} \times \bar{B})=\frac{d \bar{A}}{d t} \times \bar{B}+\bar{A} \times \frac{d \bar{B}}{d t}$ for $\bar{A}=5 t^{2} \hat{\imath}+t \hat{\jmath}-t^{3} \hat{k}$ and $\bar{B}=\operatorname{sint} \hat{\imath}-\cos t \hat{\jmath}$
3.	Find unit tangent, unit normal and unit binormal vectors for the curve $x=t, y=$ $3 \sin t, z=3 \cos t$.
4.	Find the length of the curve $\bar{r}(t)=2 t \hat{\imath}+3 \sin 2 t \hat{\jmath}+3 \cos 2 t \hat{k}$ on the interval $0 \leq t \leq 2 \pi$
5.	A particle moves on the curve $x=2 t^{2}, y=t^{2}-4 t, z=3 t-5$. Find the velocity at $\mathrm{t}=1$ in the direction of $\hat{\imath}-3 \hat{\jmath}+2 \hat{k}$.
6.	Find unit tangent, unit normal and unit binormal vectors for the curve $x=$ $\operatorname{acos} \theta, y=a \sin \theta, z=b \theta$.
7.	If $\bar{r}=t^{3} \hat{\imath}+\left(2 t^{3}-\frac{1}{5 t^{2}}\right) \hat{\jmath}$, then show that $\bar{r} \times \frac{d \bar{r}}{d t}=\hat{k}$
8.	Find unit tangent, unit normal and unit binormal vectors for the curve $\bar{r}=2 \operatorname{cost} \hat{\imath}+$ $3 \sin t \hat{\jmath}+4 t \hat{k}$ at $t=\pi$.
9.	If $\bar{r}=\bar{a} \sin h t+\bar{b} \cos h t$, where \bar{a} and \bar{b} are constant vectors, then show that (1) $\frac{d^{2} \bar{r}}{d t^{2}}=\bar{r}$, (2) $\frac{d \bar{r}}{d t} \times \frac{d^{2} \bar{r}}{d t^{2}}=$ constant.
10.	Find the magnitude of the velocity and acceleration of a particle which moves along the curve $x=2 \sin 3 t, y=2 \cos 3 t, z=8 t$ at any time $t>0$. Find unit tangent vector to the curve.
11.	If \bar{a} and \bar{b} are constant vectors and ω is constant and $\bar{r}=\bar{a} \sin \omega t+\bar{b} \cos \omega t$, prove that $\bar{r} \times \frac{d \bar{r}}{d t}+\omega(\bar{a} \times \bar{b})=0$.
12.	Find the length of the curve $\bar{r}(t)=5 t \hat{\imath}+2 \sin 2 t \hat{\jmath}+2 \cos 2 t \hat{k}$ on the interval $0 \leq t \leq 2 \pi$
13.	If $\bar{r}=\bar{a} \sin h t+\bar{b} \cos h t$, where \bar{a} and \bar{b} are constant vectors, then show that (1) $\frac{d^{2} \bar{r}}{d t^{2}}=\bar{r}$, (2) $\frac{d \bar{r}}{d t} \times \frac{d^{2} \bar{r}}{d t^{2}}=$ constant .
[C]	5 - Marks Questions
1.	If $\bar{r}=(a \cos t) \hat{\imath}+(a \sin t) \hat{\jmath}+(a t \tan \alpha) \hat{k}$, prove that (1) $\left\|\frac{d \bar{r}}{d t} \times \frac{d^{2} \bar{r}}{d t^{2}}\right\|=a^{2} \sec \alpha$ (2) $\left[\frac{d \bar{r}}{d t} \cdot \frac{d^{2} \bar{r}}{d t^{2}} \cdot \frac{d^{3} \bar{r}}{d t^{3}}\right]=a^{3} \tan \alpha$
2.	For the curve $\bar{r}=a \cos \theta \hat{\imath}+\operatorname{asin} \theta \hat{\jmath}+b \theta \hat{k}$, find the radius of curvature and torsion.
3.	Find the radius of curvature and torsion for the curve $x=t^{2}-1, y=t^{3}-1, z=t^{4}-$ 1 at $t=1$.

Semester - II: 60090205-CC3 Advanced Calculus

4.	Find the curvature and torsion for the curve $\bar{r}=\cos t \hat{\imath}+\sin t \hat{\jmath}+t \hat{k}$. Also prove that $2\left(k^{2}+\tau^{2}\right)=1$.
5.	Find the curvature and torsion for the $x=t \operatorname{cost}, y=t \operatorname{sint}, z=\lambda t$ at $t=0$
6.	Find $\nabla \varnothing$ at $(1,-2,1)$, if $\emptyset=3 x^{2} y-y^{3} z^{2}$
7.	Evaluate $\nabla e^{r^{2}}$, where $r^{2}=x^{2}+y^{2}+z^{2}$.
8.	Find the unit vector normal to the surface $x^{2}+y^{2}+z^{2}=a^{2}$ at $\left(\frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}\right)$
9.	Find the angle between the normal to the surface $x y=z^{2}$ at $P(1,1,1)$ and $Q(4,1,2)$.
10.	The temperature of the points in space is given by $\emptyset=x^{2}+y^{2}-z$. A mosquito located at point $(1,1,2)$ desires to fly in such a direction that it will get warm as soon as possible. In what direction should it move?
11.	If $\bar{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$, prove that $\operatorname{div}\left(\operatorname{grad} r^{n}\right)=n(n+1) r^{n-2}$
12.	Prove that for vector function $\bar{A}, \nabla \times(\nabla \times \bar{A})=\nabla(\nabla \cdot \bar{A})-\nabla^{2} \bar{A}$.
13.	If $\bar{A}=\nabla(x y+y z+z x)$, find $\nabla \cdot \bar{A}$ and $\nabla \times \bar{A}$.
14.	Verify, $\nabla \times(\nabla \times \bar{A})=\nabla(\nabla \cdot \bar{A})-\nabla^{2} \bar{A}$ for $\bar{A}=x^{2} y \hat{\imath}+x^{3} y^{2} \hat{\jmath}-3 x^{2} z^{2} \widehat{k}$.
15.	Find the curl of $\bar{A}=e^{x y z}(\hat{\imath}+\hat{\jmath}+\hat{k})$ at the point (1,2,3).
16.	Find $\operatorname{curl} \bar{A}=x^{2} y \hat{\imath}-2 x z \hat{\jmath}+2 y z \hat{k}$ at the point (1,0,2).
17.	Determine the constants a and b such that curl of $(2 x y+3 y z) \hat{\imath}+\left(x^{2}+a x z-\right.$ $\left.4 z^{2}\right) \hat{\jmath}+(3 x y+2 b y z) \hat{k}$ is zero.
18.	Verify, If f, g are scalars and \bar{A} and \bar{B} are vectors, then (1) $\nabla(f g)=f \nabla g+g \nabla f$ (2) $\nabla \times(\bar{A} \times \bar{B})=(\bar{B} \cdot \nabla) \bar{A}-\bar{B}(\nabla \cdot \bar{A})-(\bar{A} \cdot \nabla) \bar{B}+\bar{A}(\nabla \cdot \bar{B})$
19.	Prove that $\nabla^{2}\left[\nabla\left(\frac{\bar{r}}{r^{2}}\right)\right]=2 r^{-4}$, where $\bar{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$.
20.	Prove that $\nabla\left(\nabla \cdot \frac{\bar{r}}{r}\right)=-\frac{2}{r^{3}} \bar{r}$.
21.	Show that $\bar{E}=\frac{\bar{r}}{r^{2}}$ is irrotational.
22.	Calculate $\nabla^{2} f$ when $f=3 x^{2} z-y^{2} z^{3}+4 x^{3} y+2 x-3 y-5$ at the point (1,1,0).
23.	Prove that $\nabla\left(r \nabla \frac{1}{r^{n}}\right)=\frac{n(n-2)}{r^{n+1}}$.
24.	Prove that $\nabla^{2} f(r)=\frac{d^{2} f}{d r^{2}}+\frac{2}{r} \frac{d f}{d r}, w h e r e \bar{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$.
Unit-4	Vector calculus and its Applications
[A]	5 - Marks Questions
1.	State stokes' theorem.
2.	State Green's theorem.
3.	State Gauss' theorem.
4.	Evaluate $\int_{c} \bar{F} d \bar{r}$ where $\bar{F}=\left(3 x^{2}+6 y\right) \hat{\imath}-14 y z \hat{\jmath}+20 x z^{2} \hat{k}$ and C is the straight line joining the points $(0,0,0)$ to $(1,1,1)$.
5.	Find the work done in moving a particle from $A(1,0,1)$ to $B(2,1,2)$ along the straight line $A B$ in the force field $\bar{F}=x^{2} \hat{\imath}+(x-y) \hat{\jmath}+(y+z) \widehat{k}$.
6.	Evaluate $\iint_{S} \bar{F} \hat{n} d s$, where $\bar{F}=18 z \hat{\imath}-12 \hat{\jmath}+3 y \hat{k}$ and S is the part of the plane

Semester - II: 60090205-CC3 Advanced Calculus

	$2 x+3 y+6 z=12$ in the first octant.
7.	Evaluate $\iint_{S}(y z d y d z+x z d z d x+x y d x d y)$ over the surface of the sphere $x^{2}+y^{2}+z^{2}=1$ in the positive octant.
8.	Evaluate $\iiint_{V} \bar{F} d V$ where $\bar{F}=x \hat{\imath}+y \hat{\jmath}+2 z \hat{k}$ and V is the volume enclosed by the planes $x=0, y=0, x=a, y=a, z=b^{2}$ and the surface $z=x^{2}$.
9.	Evaluate $\iiint_{V}(\nabla \times \bar{F}) d V$, where $\bar{F}=\left(2 x^{2}-3 z\right) \hat{\imath}-2 x y \hat{\jmath}-4 x \hat{k}$ and V is the closed region bounded by the plane $x=0, y=0, z=0$ and $2 x+2 y+z=4$.
10.	Evaluate $\int_{c} \bar{F} d \bar{r}$ along the parabola $y^{2}=x$ between the points $(0,0)$ and (1,1) where $\bar{F}=x^{2} \hat{\imath}+x y \hat{\jmath}$.
11.	Verify Green's theorem for $\oint\left[\left(x^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y\right]$ where C is the boundary of the region bounded by the parabola $y=x^{2}$ and the line $y=x$.
12.	Verify Green's theorem for $\oint[(y-\sin x) d x+\cos x d y]$ where C is the plane triangle enclosed by the lines $y=0, x=\frac{\pi}{2}, y=\frac{2 x}{\pi}$.
13.	Verify stokes' theorem for the vector field $\bar{F}=\left(x^{2}-y^{2}\right) \hat{\imath}+2 x y \hat{\jmath}$ in the rectangular region in the xy-plane bounded by the lines $x=-a, x=a, y=0, y=b$.
14.	Verify stokes' theorem for $\bar{F}=(x+y) \hat{\imath}+(y+z) \hat{\jmath}-x \hat{k}$ and S is the surface of the plane $2 x+y+z=2$ which is in the first octant.
15.	Verify Gauss' divergence theorem for $\bar{F}=4 x z \hat{\imath}-y^{2} \hat{\jmath}+y z \hat{k}$ over the cube $x=0, x=1, y=0, y=1, z=0, z=1$
16.	Verify Gauss' divergence theorem for $\bar{F}=2 x^{2} y \hat{\imath}-y^{2} \hat{\jmath}+4 x z^{2} \hat{k}$ over the region bounded by the cylinder $y^{2}+z^{2}=9$ and the plane $x=2$ in the first octant.

