

Semester – II : 60090205 - CC3 Advanced Calculus

Question Bank

Unit-1	Partial differentiation
[A]	5 – Marks Questions
1.	Explain the following terms:
	a) Limit for functions of two variables.
	b) Continuous function of two variables.
2.	Explain the following terms:
	a) Partial derivative.
3	Find the limits of the following:
5.	a) $\lim_{x \to \infty} \frac{xy}{x^{y}}$
	a) $\min(x,y) \to (2,1) \frac{1}{x^2 + y^2}$
	b) $\lim_{(x,y)\to(3,4)} \sqrt{x^2 + y^2 - 1}$
4.	Check whether the given limit is exists or not $\lim_{(x,y,z)\to(0,0,0)} \frac{xy+yz^2+xz^2}{x^2+y^2+z^2}$
5.	Check whether the given functions are homogenous or not?
	a) $u = f(x, y) = x^3 + y^3 + 2x^2y$
	b) $u = f(x, y) = (y^2 + 4xy)^{\frac{3}{2}}$
6.	Write the statement of Modified Euler's theorem.
	Write the statement of Euler's theorem.
7.	If $f(x, y) = e^{x+y+z} \operatorname{find} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$
8.	If $f(p,q) = \tan^{-1} \frac{q}{p} \operatorname{find} \frac{\partial f}{\partial p}, \frac{\partial f}{\partial q}$
9.	Find F_x , F_y for $F(x, y, z) = 1 + xy^2 - 2z$
10.	Find the value of $\frac{\partial f}{\partial x}$ at the point (4, -5) if f(x, y) = x ² + 3xy + y - 1.
11.	If resistor of R_1 , R_2 and R_3 ohms are connected in parallel to make on R ohm resistor,
	the value of R can be found the equation $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ find the value of $\frac{\partial R}{\partial R_2}$ when
	$R_1 = 30, R_2 = 45, R_3 = 90$ ohms.
12.	Express $\frac{dz}{du}$, $\frac{dz}{dv}$ as function of u and v both by using chain rule also evaluate $\frac{dz}{du}$ and $\frac{dz}{dv}$
	at the given point (u,v). $z = 4e^x \log y$, where $x = \log(u\cos v)$ and $y = u\sin v$
13.	If $u = log(x^2 + y^2)$ prove that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$.
14.	If $u = x^3 + y^3 + z^3 + 3xyz$, find (i) f_x , (ii) f_{xx} , (iii) f_{xyz}
15.	Prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$ for $u = \tan^{-1}\left(\frac{x}{y}\right)$

DEPARTMENT OF MATHEMATICS

Semester – II : 60090205 - CC3 Advanced Calculus	
16.	If $u = x^3 + y^3 - 3axy$, prove that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$
17.	Find f_{yxyz} if $f(x, y, z) = 1 - 2xy^2z + x^2y$.
18.	If $u = \frac{x^2 + y^2}{x + y}$ then prove that $\left(\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y}\right)^2 = 4\left(1 - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y}\right)$
19.	If $u = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$ prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = -u$
20.	If $u = f(r)$ where $r^2 = x^2 + y^2$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f^{II}(r) + \frac{1}{r}f^I(r)$
21.	If $u = log(x^2 + y^2 + z^2)$, show that $x \frac{\partial^2 u}{\partial y \partial z} = y \frac{\partial^2 u}{\partial z \partial x}$
22.	If $u = x^2y + y^2z + z^2x$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 2(x + y + z)$
23.	Find the value of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point (1,1,1) if $z^3 - xy + yz + y^3 - 2 = 0$
24.	If $w = \log(x^2 + y^2 + z^2)$ where
	$x = cost$, $y = sint$, $z = 4\sqrt{t}$. Find $\frac{dw}{dt}$ at the point $t = 3$.
25.	Verify Euler's theorem for a function $u = \sin^{-1}\frac{x}{y} + \tan^{-1}\frac{y}{x}$.
26.	Verify Euler's theorem for a function $u = (\sqrt{x} + \sqrt{y})(x^n + y^n)$
27.	If $u = \frac{x^2 + y^2}{\sqrt{x+y}}$ then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial x} = \frac{3}{2}u$
28.	If $u = \frac{1}{x^2} + \frac{1}{xy} + \frac{\log x - \log y}{x^2 + y^2}$ then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = -2u$
29.	If $u = \cos\left(\frac{xy+yz+zx}{x^2+y^2+z^2}\right)$ then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$
30.	If $u = \left(\frac{x}{y} + \frac{y}{x} + \frac{z}{x}\right)^n$, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$
31.	If $u = x^2 y \sin^{-1} \left(\frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} - \sqrt{y}} \right)$ then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3u$
32.	If $u = x^4 y \sin^{-1} \frac{x}{y}$, find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.
33.	If $u = x^2 \tan^{-1}\left(\frac{y}{x}\right) + y^2 \sin^{-1}\left(\frac{x}{y}\right)$ then prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 2u$
34.	If $u = x + y + (x + y)f\left(\frac{y}{x}\right)$ then prove that $x\left(\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial y}\right) = y\left(\frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial x \partial y}\right)$
35.	If $u = x^n f\left(\frac{y}{x}\right) + y^{-n} \emptyset\left(\frac{x}{y}\right)$ then $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n^2 u$.
36.	If $x = e^u \tan v$ and $y = e^u \sec v$ then find the value of $\left(x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}\right) \cdot \left(x\frac{\partial v}{\partial x} + y\frac{\partial v}{\partial y}\right)$
37.	$u = \tan^{-1}\left(\frac{x^3+y^3}{x-y}\right)$ show that $\left(x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}\right) = \sin 2u$

Uka Tarsadia University Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road-394350

Semester – II : 60090205 - CC3 Advanced Calculus

38.	If $u = \sin^{-1}\left(\frac{x^{\frac{1}{4}} + y^{\frac{1}{4}}}{x^{\frac{1}{5}} + y^{\frac{1}{5}}}\right)$ then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{20} \tan u$
39.	If $u = \csc^{-1}\left(\frac{x+y}{x^2+y^2}\right)$ show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \tan u$
40.	If $u = \sin^{-1}\left(\frac{x^{\frac{1}{4}} + y^{\frac{1}{4}}}{x^{\frac{1}{6}} + y^{\frac{1}{6}}}\right)$ then prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{1}{144} \tan(\tan^2 u - 1)$
41.	$u = \tan^{-1}(x^2 + 2y^2)$ show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 2\cos 3u \sin u$
42.	State and prove the Euler's theorem
43.	State and prove the Modified Euler's theorem
44.	State and prove the Taylor's theorem.
45.	Expand e ^{ax} sin by in power of x and y.
46.	Expand $e^x \cos y$ in power of $(x - 1)$ and $\left(y - \frac{\pi}{4}\right)$.
47.	Expand $x^2y + 3y - 2$ in the neighborhood of the point $(1, -2)$.
48.	Expand $sin(x + h)(y + k)$ by Taylor's series.
Unit-2	Applications of Partial Differentiation
[A]	5 – Marks Questions
1.	Explain the following terms:
	Tangent plane
2	Normal line Evaluation the following terms:
Δ.	EXDIAILI LIE IOHOWING LETIIS.
Ζ.	Jacobian
	Jacobian Absolute maximum
3.	Jacobian Absolute maximum Explain the following terms:
3.	Jacobian Absolute maximum Explain the following terms: Absolute minimum
3.	Jacobian Absolute maximum Explain the following terms: Absolute minimum Strict maximum Write the formula of tangent plane
2. 3. 4.	Jacobian Absolute maximum Explain the following terms: Absolute minimum Strict maximum Write the formula of tangent plane Write the formula of normal line.
2. 3. 4. 5.	Explain the following terms:JacobianAbsolute maximumExplain the following terms:Absolute minimumStrict maximumWrite the formula of tangent planeWrite the formula of normal line.Find the tangent plane and normal line to the surface $f(x, y, z) = x^2 + y^2 + z - 9 = 0$ a
2. 3. 4. 5.	Jacobian Jacobian Absolute maximum Explain the following terms: Absolute minimum Strict maximum Write the formula of tangent plane Write the formula of normal line. Find the tangent plane and normal line to the surface $f(x, y, z) = x^2 + y^2 + z - 9 = 0$ a circular parabolied at the point $p_0(1,2,4)$.
2. 3. 4. 5. 6.	Explain the following terms:JacobianAbsolute maximumExplain the following terms:Absolute minimumStrict maximumWrite the formula of tangent planeWrite the formula of normal line.Find the tangent plane and normal line to the surface $f(x, y, z) = x^2 + y^2 + z - 9 = 0$ acircular parabolied at the point $p_0(1,2,4)$.Find the tangent plane and normal line at P_0 on the given surface
2. 3. 4. 5. 6.	Explain the following terms: Jacobian Absolute maximum Explain the following terms: Absolute minimum Strict maximum Write the formula of tangent plane Write the formula of normal line. Find the tangent plane and normal line to the surface $f(x, y, z) = x^2 + y^2 + z - 9 = 0$ a circular parabolied at the point $p_0(1,2,4)$. Find the tangent plane and normal line at P_0 on the given surface $(1) x^2 - 4y^2 + 3z^2 + 4 = 0$ at the point $(3,2,1)$
2. 3. 4. 5. 6.	Explain the following terms:JacobianAbsolute maximumExplain the following terms:Absolute minimumStrict maximumWrite the formula of tangent planeWrite the formula of normal line.Find the tangent plane and normal line to the surface $f(x, y, z) = x^2 + y^2 + z - 9 = 0$ acircular parabolied at the point $p_0(1,2,4)$.Find the tangent plane and normal line at P₀ on the given surface(1) $x^2 - 4y^2 + 3z^2 + 4 = 0$ at the point (3,2,1)(2) cosπx - x²y + e ^{xz} + yz = 4 at the point (1,1,-1)
2. 3. 4. 5. 6. 7.	Jacobian Absolute maximum Explain the following terms: Absolute minimum Strict maximum Write the formula of tangent plane Write the formula of normal line. Find the tangent plane and normal line to the surface $f(x, y, z) = x^2 + y^2 + z - 9 = 0$ a circular parabolied at the point $p_0(1,2,4)$. Find the tangent plane and normal line at P_0 on the given surface (1) $x^2 - 4y^2 + 3z^2 + 4 = 0$ at the point (3,2,1) (2) $\cos \pi x - x^2 y + e^{xz} + yz = 4$ at the point (1,1, -1) If $f(x, y, z) = x^2 y + 2xz^2 = 8$ at point (3,2,1)
2. 3. 4. 5. 6. 7. 8.	Jacobian Absolute maximum Explain the following terms: Absolute minimum Strict maximum Write the formula of tangent plane Write the formula of normal line. Find the tangent plane and normal line to the surface $f(x, y, z) = x^2 + y^2 + z - 9 = 0$ a circular parabolied at the point $p_0(1,2,4)$. Find the tangent plane and normal line at P_0 on the given surface (1) $x^2 - 4y^2 + 3z^2 + 4 = 0$ at the point (3,2,1) (2) $\cos \pi x - x^2 y + e^{xz} + yz = 4$ at the point (1,1, -1) If $f(x, y, z) = x^2 y + 2xz^2 = 8$ at point (3,2,1) If measurement of radius of base and height of a right circular cone are incorrect by
2. 3. 4. 5. 6. 7. 8.	Jacobian Absolute maximum Explain the following terms: Absolute minimum Strict maximum Write the formula of tangent plane Write the formula of normal line. Find the tangent plane and normal line to the surface $f(x, y, z) = x^2 + y^2 + z - 9 = 0$ a circular parabolied at the point $p_0(1,2,4)$. Find the tangent plane and normal line at P_0 on the given surface (1) $x^2 - 4y^2 + 3z^2 + 4 = 0$ at the point (3,2,1) (2) $\cos \pi x - x^2 y + e^{xz} + yz = 4$ at the point (1,1,-1) If $f(x, y, z) = x^2 y + 2xz^2 = 8$ at point (3,2,1) If measurement of radius of base and height of a right circular cone are incorrect by -1% and 2%, prove that there is no error in the volume.
2. 3. 4. 5. 6. 7. 8. 9.	Jacobian Absolute maximum Explain the following terms: Absolute minimum Strict maximum Write the formula of tangent plane Write the formula of normal line. Find the tangent plane and normal line to the surface $f(x, y, z) = x^2 + y^2 + z - 9 = 0$ a circular parabolied at the point $p_0(1,2,4)$. Find the tangent plane and normal line at P_0 on the given surface (1) $x^2 - 4y^2 + 3z^2 + 4 = 0$ at the point (3,2,1) (2) $\cos \pi x - x^2 y + e^{xz} + yz = 4$ at the point (1,1, -1) If $f(x, y, z) = x^2 y + 2xz^2 = 8$ at point (3,2,1) If measurement of radius of base and height of a right circular cone are incorrect by -1% and 2%, prove that there is no error in the volume. The period of a simple pendulum is given by $T = 2\pi \sqrt{\frac{1}{g}}$. If Tis found using

DEPARTMENT OF MATHEMATICS

Semester – II :	60090205 - CC3 Advanced Calculus

	$l = 8.05 \text{ ft.}, g = 32.01 \text{ ft/sec}^2$
10.	A balloon is in the shape of a right circular cylinder of radius 3m and length 6m, and is
	surmounted by hemispherical ends. If the radius is increased by 1% m and the length
	by 5% m, find the percentage increase in the volume of a balloon.
11.	Obtain the percentage error in the area of an ellipse when an error of 1 percentage is
	made in measuring the semi major and semi minor axes.
12.	The H.P. required to propel a steamer varies as the cube of the velocity and the square
	of length. If there is 3% increase in velocity and 4% increase in length, find the
	corresponding percentage increase in H.P.
13.	If $x = r\cos\theta$ and $y = r\sin\theta$, find $\frac{\partial(x,y)}{\partial(r,\theta)}$ and $\frac{\partial(r,\theta)}{\partial(x,y)}$
14.	If $u = \frac{x+y}{1-xy}$ and $v = \tan^{-1}x + \tan^{-1}y$, find $\frac{\partial(u,v)}{\partial(x,y)}$.
15.	If $x = r\sin\theta \cos \phi$, $y = r\sin\theta \sin \phi$, $z = r\cos\theta$, find $\frac{\partial(x,y,z)}{\partial(r,\theta,\phi)}$.
16.	If $u = 2xy$, $v = x^2 - y^2$, $x = r\cos\theta$, $y = r\sin\theta$ find $\frac{\partial(u,v)}{\partial(x,y)} \cdot \frac{\partial(x,y)}{\partial(r,\theta)}$
17.	If $x = e^u \sec v$, $y = e^u \tan v$ then , prove that $J \cdot J^I = 1$.
18.	If $x = v^2 + w^2$, $y = w^2 + u^2$, $z = u^2 + v^2$, prove that $J \cdot J^I = 1$.
19.	If $u = xyz$, $v = x^2 + y^2 + z^2$, $w = x + y + z$, find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$.
20.	If $x = \sqrt{vw}$, $y = \sqrt{wu}$, $z = \sqrt{uv}$ and
	$u = rsin\theta cos \phi$, $v = rsin\theta sin \phi$,
	$w = r\cos\theta \text{ find } \frac{\partial(x, y, z)}{\partial x}$
	$\partial(\mathbf{r}, \theta, \phi)$
21.	If $x = e^u \sec v$, $y = e^y \tan v$ then prove that $J \cdot J^I = 1$
22.	If $u = 2xy$, $v = x^2 - y^2$ and $x = r\cos\theta$, $y = r\sin\theta$ find $\frac{\partial(u,v)}{\partial(r,\theta)}$
23.	Find the stationary value of $x^3 + y^3 - 3axy$, $a > 0$. Also find the extremum values.
24.	Find the extreme value of $x^2 + y^2 + 6x + 12$.
25.	Find the extreme value of $x^3 + 3xy^2 - 3x^2 - 3y^2 + 4$.
26.	For $f(x, y) = x^3 + y^3 - 3xy$, examine the extremum values.
27.	Find the maximum and minimum values of
	$x^3 + y^3 - 63(x + y) + 12xy.$
	$x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x.$
	$x^2y^2 - 5x^2 - 8xy - 5y^2$.
Unit-3	Vectors Functions
	1 – Mark Questions
1.	Define tangent vector
2.	Define normal plane
3.	Define unit tangent vector.
4.	Define normal vector.
5.	Define binormal vector.
6.	Define field

8

DEPARTMENT OF MATHEMATICS

Semester – II : 60090205 - CC3 Advanced Calculus

8.Define vector point function.9.Define gradient.10.Define curvature11.Define osculating plane12.Define Torsion [B]3 - Marks Questions 1.If $\bar{r} = a(\sin \omega t) \hat{i} + b(\sin \omega t) \hat{j} + \frac{ct}{\omega^2}(\sin \omega t) \hat{k}$, prove that $\frac{d^2\bar{r}}{dt^2} + \omega^2\bar{r} = \frac{2c}{\omega}(\cos \omega t)\hat{k}$.2.Verify the $\frac{d}{dt}(\bar{A} \times \bar{B}) = \frac{d\bar{A}}{dt} \times \bar{B} + \bar{A} \times \frac{d\bar{B}}{dt}$ for $\bar{A} = 5t^2\hat{i} + t\hat{j} - t^3\hat{k}$ and $\bar{B} = \sin t\hat{i} - cost\hat{j}$ 3.Find unit tangent, unit normal and unit binormal vectors for the curve $x = t, y = 3\sin t, z = 3\cos t$.4.Find the length of the curve $\bar{r}(t) = 2t\hat{i} + 3\sin 2t\hat{j} + 3\cos 2t\hat{k}$ on the interval $0 \le t \le 2\pi$ 5.A particle moves on the curve $x = 2t^2, y = t^2 - 4t, z = 3t - 5$. Find the velocity at t=1 in the direction $f\hat{i} - 3\hat{j} + 2\hat{k}$.6.Find unit tangent, unit normal and unit binormal vectors for the curve $x = a\cos\theta, y = a\sin\theta, z = b\theta$.7.If $\bar{r} = t^3\hat{t} + (2t^3 - \frac{1}{5t^2})\hat{j}$, then show that $\bar{r} \times \frac{d\bar{r}}{dt} = \hat{k}$ 8.Find unit tangent, unit normal and unit binormal vectors for the curve $\bar{r} = 2cost\hat{i} + 3\sin t\hat{j} + 4t\hat{k}$ at $t = \pi$.9.If $\bar{r} = \bar{a} \sin ht + \bar{b} \cosh ht$, where \bar{a} and \bar{b} are constant vectors, then show that $(1)\frac{d^2\bar{r}}{dt^2} = \bar{r}, (2)\frac{dr}{dt} \times \frac{d^2\bar{r}}{dt^2} = constant.$	7.	Define Scalar point function
9.Define gradient.10.Define curvature11.Define osculating plane12.Define Torsion [B]3 - Marks Questions 1.If $\bar{r} = a(\sin \omega t) \hat{r} + b(\sin \omega t) \hat{f} + \frac{ct}{\omega^2}(\sin \omega t) \hat{k}$, prove that $\frac{d^2\bar{r}}{dt^2} + \omega^2\bar{r} = \frac{2c}{\omega}(\cos \omega t)\hat{k}$.2.Verify the $\frac{d}{dt}(\bar{A} \times \bar{B}) = \frac{d\bar{A}}{dt} \times \bar{B} + \bar{A} \times \frac{d\bar{B}}{dt}$ for $\bar{A} = 5t^2\hat{i} + t\hat{j} - t^3\hat{k}$ and $\bar{B} = \sin t\hat{i} - cost\hat{j}$ 3.Find unit tangent, unit normal and unit binormal vectors for the curve $x = t, y = 3\sin t, z = 3\cos t$.4.Find the length of the curve $\bar{r}(t) = 2t\hat{i} + 3\sin 2t\hat{j} + 3\cos 2t\hat{k}$ on the interval $0 \le t \le 2\pi$ 5.A particle moves on the curve $x = 2t^2, y = t^2 - 4t, z = 3t - 5$. Find the velocity at t=1 in the direction $f\hat{i} - 3\hat{j} + 2\hat{k}$.6.Find unit tangent, unit normal and unit binormal vectors for the curve $x = a\cos\theta, y = a\sin\theta, z = b\theta$.7.If $\bar{r} = t^3\hat{t} + (2t^3 - \frac{1}{tz^2})\hat{j}$, then show that $\bar{r} \times \frac{d\bar{r}}{dt} = \hat{k}$ 8.Find unit tangent, unit normal and unit binormal vectors for the curve $\bar{r} = 2cost\hat{i} + 3\sin t\hat{j} + 4t\hat{k}$ at $t = \pi$.9.If $\bar{r} = \bar{a} \sin ht + \bar{b} \cosh ht$, where \bar{a} and \bar{b} are constant vectors, then show that $(1)\frac{d^2\bar{r}}{dt^2} = \bar{r}, (2)\frac{dr}{dt} \times \frac{d^2\bar{r}}{dt^2} = constant.$	8.	Define vector point function.
10.Define curvature11.Define osculating plane12.Define Torsion [B] 3 - Marks Questions1.If $\bar{r} = a(\sin \omega t) \hat{t} + b(\sin \omega t) \hat{f} + \frac{ct}{\omega^2}(\sin \omega t) \hat{k}$, prove that $\frac{d^2r}{dt^2} + \omega^2 \bar{r} = \frac{2c}{\omega}(\cos \omega t) \hat{k}$.2.Verify the $\frac{d}{dt}(\bar{A} \times \bar{B}) = \frac{d\bar{A}}{dt} \times \bar{B} + \bar{A} \times \frac{d\bar{B}}{dt}$ for $\bar{A} = 5t^2 \hat{i} + t\hat{j} - t^3 \hat{k}$ and $\bar{B} = \sin t \hat{i} - cost\hat{j}$ 3.Find unit tangent, unit normal and unit binormal vectors for the curve $x = t, y = 3 \sin t, z = 3 \cos t$.4.Find the length of the curve $\bar{r}(t) = 2t\hat{i} + 3\sin 2t\hat{j} + 3\cos 2t\hat{k}$ on the interval $0 \le t \le 2\pi$ 5.A particle moves on the curve $x = 2t^2, y = t^2 - 4t, z = 3t - 5$. Find the velocity at t=1 in the direction of $\hat{i} - 3\hat{j} + 2\hat{k}$.6.Find unit tangent, unit normal and unit binormal vectors for the curve $x = a\cos\theta, y = a\sin\theta, z = b\theta$.7.If $\bar{r} = t^3 \hat{i} + (2t^3 - \frac{1}{5t^2})\hat{j}$, then show that $\bar{r} \times \frac{d\bar{r}}{dt} = \hat{k}$ 8.Find unit tangent, unit normal and unit binormal vectors for the curve $\bar{r} = 2cost\hat{i} + 3\sin t\hat{j} + 4t\hat{k}$ at $t = \pi$.9.If $\bar{r} = \bar{a} \sin ht + \bar{b} \cos ht$, where \bar{a} and \bar{b} are constant vectors, then show that $(1) \frac{d^2r}{dt^2} = \bar{r}, (2) \frac{d\bar{r}}{dt} \times \frac{d^2\bar{r}}{dt^2} = constant$.	9.	Define gradient.
11.Define osculating plane12.Define Torsion [B] 3 - Marks Questions1.If $\bar{r} = a(\sin \omega t) \hat{\imath} + b(\sin \omega t) \hat{\jmath} + \frac{ct}{\omega^2}(\sin \omega t) \hat{k}$, prove that $\frac{d^2\bar{r}}{dt^2} + \omega^2 \bar{r} = \frac{2c}{\omega}(\cos \omega t) \hat{k}$.2.Verify the $\frac{d}{dt}(\bar{A} \times \bar{B}) = \frac{d\bar{A}}{dt} \times \bar{B} + \bar{A} \times \frac{d\bar{B}}{dt}$ for $\bar{A} = 5t^2\hat{\imath} + t\hat{\jmath} - t^3\hat{k}$ and $\bar{B} = \sint\hat{\imath} - cost\hat{\jmath}$ 3.Find unit tangent, unit normal and unit binormal vectors for the curve $x = t, y = 3 \sin t, z = 3 \cos t$.4.Find the length of the curve $\bar{r}(t) = 2t\hat{\imath} + 3\sin 2t\hat{\jmath} + 3\cos 2t\hat{k}$ on the interval $0 \le t \le 2\pi$ 5.A particle moves on the curve $x = 2t^2, y = t^2 - 4t, z = 3t - 5$. Find the velocity at t=1 in the direction of $\hat{\imath} - 3\hat{\jmath} + 2\hat{k}$.6.Find unit tangent, unit normal and unit binormal vectors for the curve $x = a\cos\theta, y = a\sin\theta, z = b\theta$.7.If $\bar{r} = t^3\hat{\imath} + (2t^3 - \frac{1}{5t^2})\hat{\jmath}$, then show that $\bar{r} \times \frac{d\bar{r}}{dt} = \hat{k}$ 8.Find unit tangent, unit normal and unit binormal vectors for the curve $\bar{r} = 2cost\hat{\imath} + 3\sin t\hat{\jmath} + 4t\hat{k}$ at $t = \pi$.9.If $\bar{r} = \bar{a} \sinh t + \bar{b} \cosh t$, where \bar{a} and \bar{b} are constant vectors, then show that $(1) \frac{d^2\bar{r}}{dt^2} = \bar{r}, (2) \frac{d\bar{r}}{dt} \times \frac{d^2\bar{r}}{dt^2} = constant.$	10.	Define curvature
12. Define Torsion [B] 3 - Marks Questions 1. If $\bar{r} = a(\sin \omega t) \hat{i} + b(\sin \omega t) \hat{j} + \frac{ct}{\omega^2}(\sin \omega t) \hat{k}$, prove that $\frac{d^2\bar{r}}{dt^2} + \omega^2 \bar{r} = \frac{2c}{\omega}(\cos \omega t) \hat{k}$. 2. Verify the $\frac{d}{dt}(\bar{A} \times \bar{B}) = \frac{d\bar{A}}{dt} \times \bar{B} + \bar{A} \times \frac{d\bar{B}}{dt}$ for $\bar{A} = 5t^2\hat{i} + t\hat{j} - t^3\hat{k}$ and $\bar{B} = \sin t\hat{i} - \cos t\hat{j}$ 3. Find unit tangent, unit normal and unit binormal vectors for the curve $x = t, y = 3\sin t, z = 3\cos t$. 4. Find the length of the curve $\bar{r}(t) = 2t\hat{i} + 3\sin 2t\hat{j} + 3\cos 2t\hat{k}$ on the interval $0 \le t \le 2\pi$ 5. A particle moves on the curve $x = 2t^2, y = t^2 - 4t, z = 3t - 5$. Find the velocity at t=1 in the direction of $\hat{i} - 3\hat{j} + 2\hat{k}$. 6. Find unit tangent, unit normal and unit binormal vectors for the curve $x = a\cos\theta, y = a\sin\theta, z = b\theta$. 7. If $\bar{r} = t^3\hat{i} + (2t^3 - \frac{1}{5t^2})\hat{j}$, then show that $\bar{r} \times \frac{d\bar{r}}{dt} = \hat{k}$ 8. Find unit tangent, unit normal and unit binormal vectors for the curve $\bar{r} = 2\cos t\hat{i} + 3\sin t\hat{j} + 4t\hat{k}$ at $t = \pi$. 9. If $\bar{r} = \bar{a}\sin ht + \bar{b}\cos ht$, where \bar{a} and \bar{b} are constant vectors, then show that $(1)\frac{d^2\bar{r}}{dt^2} = \bar{r}, (2)\frac{d\bar{r}}{dt} \times \frac{d^2\bar{r}}{dt^2} = constant$.	11.	Define osculating plane
[B]3 - Marks Questions1.If $\bar{r} = a(\sin \omega t) \hat{i} + b(\sin \omega t) \hat{j} + \frac{ct}{\omega^2}(\sin \omega t) \hat{k}$, prove that $\frac{d^2\bar{r}}{dt^2} + \omega^2 \bar{r} = \frac{2c}{\omega}(\cos \omega t) \hat{k}$.2.Verify the $\frac{d}{dt}(\bar{A} \times \bar{B}) = \frac{d\bar{A}}{dt} \times \bar{B} + \bar{A} \times \frac{d\bar{B}}{dt}$ for $\bar{A} = 5t^2\hat{i} + t\hat{j} - t^3\hat{k}$ and $\bar{B} = \sin t\hat{i} - \cos t\hat{j}$ 3.Find unit tangent, unit normal and unit binormal vectors for the curve $x = t, y = 3\sin t, z = 3\cos t$.4.Find the length of the curve $\bar{r}(t) = 2t\hat{i} + 3\sin 2t\hat{j} + 3\cos 2t\hat{k}$ on the interval $0 \le t \le 2\pi$ 5.A particle moves on the curve $x = 2t^2, y = t^2 - 4t, z = 3t - 5$. Find the velocity at t=1 in the direction $f\hat{i} - 3\hat{j} + 2\hat{k}$.6.Find unit tangent, unit normal and unit binormal vectors for the curve $x = a\cos\theta, y = a\sin\theta, z = b\theta$.7.If $\bar{r} = t^3\hat{i} + (2t^3 - \frac{1}{5t^2})\hat{j}$, then show that $\bar{r} \times \frac{d\bar{r}}{dt} = \hat{k}$ 8.Find unit tangent, unit normal and unit binormal vectors for the curve $\bar{r} = 2cost\hat{i} + 3\sin t\hat{j} + 4t\hat{k}$ at $t = \pi$.9.If $\bar{r} = \bar{a} \sin ht + \bar{b} \cos ht$, where \bar{a} and \bar{b} are constant vectors, then show that $(1)\frac{d^2\bar{r}}{dt^2} = \bar{r}, (2)\frac{d\bar{r}}{dt} \times \frac{d^2\bar{r}}{dt^2} = constant$.	12.	Define Torsion
1. If $\bar{r} = a(\sin \omega t) \hat{i} + b(\sin \omega t) \hat{j} + \frac{ct}{\omega^2}(\sin \omega t) \hat{k}$, prove that $\frac{d^2\bar{r}}{dt^2} + \omega^2\bar{r} = \frac{2c}{\omega}(\cos \omega t)\hat{k}$. 2. Verify the $\frac{d}{dt}(\bar{A} \times \bar{B}) = \frac{d\bar{A}}{dt} \times \bar{B} + \bar{A} \times \frac{d\bar{B}}{dt}$ for $\bar{A} = 5t^2\hat{i} + t\hat{j} - t^3\hat{k}$ and $\bar{B} = \sin\hat{t} - cost\hat{j}$ 3. Find unit tangent, unit normal and unit binormal vectors for the curve $x = t, y = 3\sin t, z = 3\cos t$. 4. Find the length of the curve $\bar{r}(t) = 2t\hat{i} + 3\sin 2t\hat{j} + 3\cos 2t\hat{k}$ on the interval $0 \le t \le 2\pi$ 5. A particle moves on the curve $x = 2t^2, y = t^2 - 4t, z = 3t - 5$. Find the velocity at $t=1$ in the direction of $\hat{i} - 3\hat{j} + 2\hat{k}$. 6. Find unit tangent, unit normal and unit binormal vectors for the curve $x = a\cos\theta, y = a\sin\theta, z = b\theta$. 7. If $\bar{r} = t^3\hat{i} + (2t^3 - \frac{1}{5t^2})\hat{j}$, then show that $\bar{r} \times \frac{d\bar{r}}{dt} = \hat{k}$ 8. Find unit tangent, unit normal and unit binormal vectors for the curve $\bar{r} = 2cost\hat{i} + 3\sin t\hat{j} + 4t\hat{k}$ at $t = \pi$. 9. If $\bar{r} = \bar{a} \sin t + \bar{b} \cos tt$, where \bar{a} and \bar{b} are constant vectors, then show that $(1)\frac{d^2\bar{r}}{dt^2} = \bar{r}, (2)\frac{d\bar{r}}{dt} \times \frac{d^2\bar{r}}{dt^2} = constant$.	[B]	3 - Marks Questions
 Verify the ^d/_{dt} (Ā × B̄) = ^{dA}/_{dt} × B̄ + Ā × ^{dB}/_{dt} for Ā = 5t²î + tĵ - t³k̂ and B̄ = sint î - costĵ Find unit tangent, unit normal and unit binormal vectors for the curve x = t, y = 3 sin t, z = 3 cos t. Find the length of the curve r̄(t) = 2tî + 3 sin 2tĵ + 3 cos 2tk̂ on the interval 0 ≤ t ≤ 2π A particle moves on the curve x = 2t², y = t² - 4t, z = 3t - 5. Find the velocity at t=1 in the direction of î - 3ĵ + 2k̂. Find unit tangent, unit normal and unit binormal vectors for the curve x = acos θ, y = a sin θ, z = bθ. If r̄ = t³î + (2t³ - 1/(5t²)) ĵ, then show that r̄ × dr̄/dt = k̂ Find unit tangent, unit normal and unit binormal vectors for the curve r̄ = 2costî + 3 sin tĵ + 4tk̂ at t = π. If r̄ = ā sin ht + b̄ cos ht, where ā and b̄ are constant vectors, then show that (1) d²r̄/dt² = r̄, (2) dr̄/dt × d²r̄/dt² = constant. 	1.	If $\bar{r} = a(\sin\omega t)\hat{i} + b(\sin\omega t)\hat{j} + \frac{ct}{\omega^2}(\sin\omega t)\hat{k}$, prove that $\frac{d^2\bar{r}}{dt^2} + \omega^2\bar{r} = \frac{2c}{\omega}(\cos\omega t)\hat{k}$.
 Find unit tangent, unit normal and unit binormal vectors for the curve x = t, y = 3 sin t, z = 3 cos t. Find the length of the curve r (t) = 2tî + 3 sin 2tĵ + 3 cos 2tk̂ on the interval 0 ≤ t ≤ 2π A particle moves on the curve x = 2t², y = t² - 4t, z = 3t - 5. Find the velocity at t=1 in the direction of î - 3ĵ + 2k̂. Find unit tangent, unit normal and unit binormal vectors for the curve x = acos θ, y = a sin θ, z = bθ. If r	2.	Verify the $\frac{d}{dt}(\bar{A} \times \bar{B}) = \frac{dA}{dt} \times \bar{B} + \bar{A} \times \frac{dB}{dt}$ for $\bar{A} = 5t^2\hat{\imath} + t\hat{\jmath} - t^3\hat{k}$ and $\bar{B} = \operatorname{sint}\hat{\imath} - \operatorname{cost}\hat{\jmath}$
$3 \sin t, z = 3 \cos t.$ 4.Find the length of the curve $\bar{r}(t) = 2t\hat{i} + 3\sin 2t\hat{j} + 3\cos 2t\hat{k}$ on the interval $0 \le t \le 2\pi$ 5.A particle moves on the curve $x = 2t^2, y = t^2 - 4t, z = 3t - 5$. Find the velocity at $t=1$ in the direction of $\hat{i} - 3\hat{j} + 2\hat{k}$.6.Find unit tangent, unit normal and unit binormal vectors for the curve $x = a\cos\theta, y = a\sin\theta, z = b\theta$.7.If $\bar{r} = t^3\hat{i} + (2t^3 - \frac{1}{5t^2})\hat{j}$, then show that $\bar{r} \times \frac{d\bar{r}}{dt} = \hat{k}$ 8.Find unit tangent, unit normal and unit binormal vectors for the curve $\bar{r} = 2cost\hat{i} + 3\sin t\hat{j} + 4t\hat{k}$ at $t = \pi$.9.If $\bar{r} = \bar{a} \sin ht + \bar{b} \cos ht$, where \bar{a} and \bar{b} are constant vectors, then show that $(1)\frac{d^2\bar{r}}{dt^2} = \bar{r}, (2)\frac{d\bar{r}}{dt} \times \frac{d^2\bar{r}}{dt^2} = constant.$	3.	Find unit tangent, unit normal and unit binormal vectors for the curve $x = t, y =$
 4. Find the length of the curve r (t) = 2tî + 3 sin 2tĵ + 3 cos 2tk on the interval 0 ≤ t ≤ 2π 5. A particle moves on the curve x = 2t², y = t² - 4t, z = 3t - 5. Find the velocity at t=1 in the direction of î - 3ĵ + 2k. 6. Find unit tangent, unit normal and unit binormal vectors for the curve x = acos θ, y = a sin θ, z = bθ. 7. If r = t³î + (2t³ - 1/5t²)ĵ, then show that r × dr dr dt dt		$3\sin t$, $z = 3\cos t$.
5. A particle moves on the curve $x = 2t^2$, $y = t^2 - 4t$, $z = 3t - 5$. Find the velocity at $t=1$ in the direction of $\hat{i} - 3\hat{j} + 2\hat{k}$. 6. Find unit tangent, unit normal and unit binormal vectors for the curve $x = a\cos\theta$, $y = a\sin\theta$, $z = b\theta$. 7. If $\bar{r} = t^3\hat{i} + (2t^3 - \frac{1}{5t^2})\hat{j}$, then show that $\bar{r} \times \frac{d\bar{r}}{dt} = \hat{k}$ 8. Find unit tangent, unit normal and unit binormal vectors for the curve $\bar{r} = 2cost\hat{i} + 3\sin t\hat{j} + 4t\hat{k}$ at $t = \pi$. 9. If $\bar{r} = \bar{a} \sin ht + \bar{b} \cos ht$, where \bar{a} and \bar{b} are constant vectors, then show that $(1)\frac{d^2\bar{r}}{dt^2} = \bar{r}$, $(2)\frac{d\bar{r}}{dt} \times \frac{d^2\bar{r}}{dt^2} = constant$.	4.	Find the length of the curve $\bar{r}(t) = 2t\hat{i} + 3\sin 2t\hat{j} + 3\cos 2t\hat{k}$ on the interval
 3. A particle moves on the curve x = 2t , y = t = 4t, z = 3t = 5. Find the velocity at t=1 in the direction of î = 3ĵ + 2k. 6. Find unit tangent, unit normal and unit binormal vectors for the curve x = acos θ, y = a sin θ, z = bθ. 7. If r̄ = t³î + (2t³ - 1/(5t²)ĵ, then show that r̄ × dr̄/dt = k 8. Find unit tangent, unit normal and unit binormal vectors for the curve r̄ = 2costî + 3 sin tĵ + 4tk at t = π. 9. If r̄ = ā sin ht + b̄ cos ht, where ā and b̄ are constant vectors, then show that (1) d²r̄/dt² = r̄, (2) dr̄/dt × d²r̄/dt² = constant. 10. Find the magnitude of the velocity and acceleration of a particle which moves along 		$0 \le t \le 2\pi$ A particle movies on the surve $x = 2t^2$ $y = t^2$ $4t = 2t$. F Find the velocity at
6. Find unit tangent, unit normal and unit binormal vectors for the curve $x = a\cos\theta$, $y = a\sin\theta$, $z = b\theta$. 7. If $\bar{r} = t^3\hat{i} + (2t^3 - \frac{1}{5t^2})\hat{j}$, then show that $\bar{r} \times \frac{d\bar{r}}{dt} = \hat{k}$ 8. Find unit tangent, unit normal and unit binormal vectors for the curve $\bar{r} = 2cost\hat{i} + 3\sin t\hat{j} + 4t\hat{k}$ at $t = \pi$. 9. If $\bar{r} = \bar{a}\sin ht + \bar{b}\cos ht$, where \bar{a} and \bar{b} are constant vectors, then show that $(1)\frac{d^2\bar{r}}{dt^2} = \bar{r}$, $(2)\frac{d\bar{r}}{dt} \times \frac{d^2\bar{r}}{dt^2} = constant$.	5.	A particle moves on the curve $x = 2t$, $y = t = 4t$, $z = 5t = 5$. Find the velocity at $t=1$ in the direction of $\hat{t} = 2\hat{t} + 2\hat{t}$
10. Find that tangent, that normal and that binomial vectors for the curve $x = a\cos\theta$, $y = a\sin\theta$, $z = b\theta$. 7. If $\bar{r} = t^3\hat{i} + (2t^3 - \frac{1}{5t^2})\hat{j}$, then show that $\bar{r} \times \frac{d\bar{r}}{dt} = \hat{k}$ 8. Find unit tangent, unit normal and unit binormal vectors for the curve $\bar{r} = 2cost\hat{i} + 3\sin t\hat{j} + 4t\hat{k}$ at $t = \pi$. 9. If $\bar{r} = \bar{a}\sin ht + \bar{b}\cos ht$, where \bar{a} and \bar{b} are constant vectors, then show that $(1)\frac{d^2\bar{r}}{dt^2} = \bar{r}$, $(2)\frac{d\bar{r}}{dt} \times \frac{d^2\bar{r}}{dt^2} = constant$.	6	$t-1$ in the unrection of $t-5j+2\kappa$. Find unit tangent unit normal and unit binormal vectors for the curve $x = -1$
7. If $\bar{r} = t^3 \hat{i} + (2t^3 - \frac{1}{5t^2})\hat{j}$, then show that $\bar{r} \times \frac{d\bar{r}}{dt} = \hat{k}$ 8. Find unit tangent, unit normal and unit binormal vectors for the curve $\bar{r} = 2cost\hat{i} + 3sin t\hat{j} + 4t\hat{k}$ at $t = \pi$. 9. If $\bar{r} = \bar{a}sin ht + \bar{b}cos ht$, where \bar{a} and \bar{b} are constant vectors, then show that $(1)\frac{d^2\bar{r}}{dt^2} = \bar{r}$, $(2)\frac{d\bar{r}}{dt} \times \frac{d^2\bar{r}}{dt^2} = constant$.	0.	Find unit tangent, unit normal and unit binormal vectors for the curve $x = a\cos\theta$ $v = a\sin\theta$ $z = b\theta$
8. Find unit tangent, unit normal and unit binormal vectors for the curve $\bar{r} = 2cost\hat{i} + 3sin t\hat{j} + 4t\hat{k}$ at $t = \pi$. 9. If $\bar{r} = \bar{a}sin ht + \bar{b}cos ht$, where \bar{a} and \bar{b} are constant vectors, then show that $(1)\frac{d^2\bar{r}}{dt^2} = \bar{r}, (2)\frac{d\bar{r}}{dt} \times \frac{d^2\bar{r}}{dt^2} = constant.$	7.	If $\bar{r} = t^3 \hat{i} + \left(2t^3 - \frac{1}{\tau^2}\right)\hat{j}$, then show that $\bar{r} \times \frac{d\bar{r}}{dr} = \hat{k}$
9. If $\bar{r} = \bar{a} \sin ht + \bar{b} \cos ht$, where \bar{a} and \bar{b} are constant vectors, then show that $(1) \frac{d^2 \bar{r}}{dt^2} = \bar{r}$, $(2) \frac{d\bar{r}}{dt} \times \frac{d^2 \bar{r}}{dt^2} = constant$.	8	Find unit tangent unit normal and unit binormal vectors for the curve $\bar{r} = 2cost\hat{i} + cost\hat{i}$
9. If $\bar{r} = \bar{a} \sin ht + \bar{b} \cos ht$, where \bar{a} and \bar{b} are constant vectors, then show that $(1) \frac{d^2 \bar{r}}{dt^2} = \bar{r}$, $(2) \frac{d\bar{r}}{dt} \times \frac{d^2 \bar{r}}{dt^2} = constant$.	0.	$3 \sin t\hat{j} + 4t\hat{k}$ at $t = \pi$.
$(1)\frac{d^2\bar{r}}{dt^2} = \bar{r}, (2)\frac{d\bar{r}}{dt} \times \frac{d^2\bar{r}}{dt^2} = constant.$	9.	If $\overline{r} = \overline{a} \sin ht + \overline{b} \cos ht$, where \overline{a} and \overline{b} are constant vectors, then show that
10 Find the magnitude of the velocity and acceleration of a particle which moves along		$(1)rac{d^2ar{r}}{dt^2} = ar{r}$, $(2)rac{dar{r}}{dt} imes rac{d^2ar{r}}{dt^2} = constant.$
The the magnitude of the velocity and acceleration of a particle which moves along	10.	Find the magnitude of the velocity and acceleration of a particle which moves along
the curve $x = 2 \sin 3t$, $y = 2 \cos 3t$, $z = 8t$ at any time $t > 0$. Find unit tangent vector		the curve $x = 2 \sin 3t$, $y = 2 \cos 3t$, $z = 8t$ at any time $t > 0$. Find unit tangent vector
to the curve.		to the curve.
11. If \bar{a} and \bar{b} are constant vectors and ω is constant and $\bar{r} = \bar{a} \sin \omega t + \bar{b} \cos \omega t$, prove	11.	If \bar{a} and \bar{b} are constant vectors and ω is constant and $\bar{r} = \bar{a} \sin \omega t + \bar{b} \cos \omega t$, prove
that $\bar{r} \times \frac{d\bar{r}}{dt} + \omega(\bar{a} \times \bar{b}) = 0.$		that $\bar{r} \times \frac{d\bar{r}}{dt} + \omega(\bar{a} \times \bar{b}) = 0.$
12. Find the length of the curve $\bar{r}(t) = 5t\hat{i} + 2\sin 2t\hat{j} + 2\cos 2t\hat{k}$ on the interval	12.	Find the length of the curve $\bar{r}(t) = 5t\hat{i} + 2\sin 2t\hat{j} + 2\cos 2t\hat{k}$ on the interval
$0 \le t \le 2\pi$		$0 \le t \le 2\pi$
13. If $\bar{r} = \bar{a} \sin ht + \bar{b} \cos ht$, where \bar{a} and \bar{b} are constant vectors, then show that	13.	If $\bar{r} = \bar{a} \sin ht + \bar{b} \cos ht$, where \bar{a} and \bar{b} are constant vectors, then show that
$(1)\frac{d^2\bar{r}}{dt^2} = \bar{r}$, $(2)\frac{d\bar{r}}{dt} \times \frac{d^2\bar{r}}{dt^2} = constant.$		$(1)\frac{d^2\bar{r}}{dt^2} = \bar{r}$, $(2)\frac{d\bar{r}}{dt} \times \frac{d^2\bar{r}}{dt^2} = constant.$
[C] 5 – Marks Questions	[C]	5 – Marks Questions
1. If $\bar{r} = (a \cos t) \hat{i} + (a \sin t) \hat{j} + (at \tan \alpha) \hat{k}$, prove that	1.	If $\overline{r} = (a \cos t) \hat{i} + (a \sin t) \hat{j} + (at \tan \alpha) \hat{k}$, prove that
$(1) \left \frac{d\bar{r}}{dt} \times \frac{d^2\bar{r}}{dt^2} \right = a^2 sec\alpha$		(1) $\left \frac{d\bar{r}}{dt} \times \frac{d^2\bar{r}}{dt^2}\right = a^2 sec\alpha$
$(2)\left[\frac{d\bar{r}}{dt}\cdot\frac{d^2\bar{r}}{dt^2}\cdot\frac{d^3\bar{r}}{dt^3}\right] = a^3\tan\alpha$		$(2)\left[\frac{d\bar{r}}{dt}\cdot\frac{d^2\bar{r}}{dt^2}\cdot\frac{d^3\bar{r}}{dt^3}\right] = a^3\tan\alpha$
2. For the curve $\bar{r} = a\cos\theta \hat{i} + a\sin\theta \hat{j} + b\theta \hat{k}$, find the radius of curvature and torsion.	2.	For the curve $\bar{r} = a\cos\theta \hat{\imath} + a\sin\theta \hat{\jmath} + b\theta \hat{k}$, find the radius of curvature and torsion.
3. Find the radius of curvature and torsion for the curve $x = t^2 - 1$, $y = t^3 - 1$, $z = t^4 - 1$	3.	Find the radius of curvature and torsion for the curve $x = t^2 - 1$, $y = t^3 - 1$, $z = t^4 - 1$
1 at $t = 1$.		1 at $t = 1$.

Uka Tarsadia University Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road-394350

Semester – II : 60090205 - CC3 Advanced Calculus	
4.	Find the curvature and torsion for the curve
	$\bar{r} = \cos t\hat{\iota} + \sin t\hat{\jmath} + t\hat{k}$. Also prove that $2(k^2 + \tau^2) = 1$.
5.	Find the curvature and torsion for the $x = tcost$, $y = tsint$, $z = \lambda t$ at $t = 0$
6.	Find $\nabla \phi \ at \ (1, -2, 1), if \ \phi = 3x^2y - y^3z^2$
7.	Evaluate ∇e^{r^2} , where $r^2 = x^2 + y^2 + z^2$.
8.	Find the unit vector normal to the surface $x^2 + y^2 + z^2 = a^2 \operatorname{at} \left(\frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}} \right)$
9.	Find the angle between the normal to the surface $xy = z^2$ at $P(1,1,1)$ and $Q(4,1,2)$.
10.	The temperature of the points in space is given by $\emptyset = x^2 + y^2 - z$. A mosquito
	located at point (1,1,2) desires to fly in such a direction that it will get warm as soon
	as possible. In what direction should it move?
11.	If $\overline{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, prove that $div(grad r^n) = n(n+1)r^{n-2}$
12.	Prove that for vector function \overline{A} , $\nabla \times (\nabla \times \overline{A}) = \nabla (\nabla \cdot \overline{A}) - \nabla^2 \overline{A}$.
13.	If $\overline{A} = \nabla(xy + yz + zx)$, find $\nabla \cdot \overline{A}$ and $\nabla \times \overline{A}$.
14.	Verify, $\nabla \times (\nabla \times \overline{A}) = \nabla (\nabla \cdot \overline{A}) - \nabla^2 \overline{A}$ for $\overline{A} = x^2 y \hat{\imath} + x^3 y^2 \hat{\jmath} - 3x^2 z^2 \hat{k}$.
15.	Find the curl of $\overline{A} = e^{xyz}(\hat{\imath} + \hat{\jmath} + \hat{k})$ at the point (1,2,3).
16.	Find curl $\overline{A} = x^2 y \hat{\imath} - 2xz \hat{\jmath} + 2yz \hat{k}$ at the point (1,0,2).
17.	Determine the constants a and b such that curl of $(2xy + 3yz)\hat{i} + (x^2 + axz - axz)\hat{i}$
	$(4z^2)\hat{j} + (3xy + 2byz)\hat{k}$ is zero.
18.	Verify, If f , g are scalars and \overline{A} and \overline{B} are vectors, then
	$(1) \nabla (fg) = f \nabla g + g \nabla f$
10	$(2) \nabla \times (A \times B) = (B \cdot \nabla)A - B(\nabla \cdot A) - (A \cdot \nabla)B + A(\nabla \cdot B)$
19.	Prove that $\nabla^2 \left[\nabla \left(\frac{r}{r^2} \right) \right] = 2r^{-4}$, where $\bar{r} = x\hat{i} + y\hat{j} + z\hat{k}$.
20.	Prove that $\nabla \left(\nabla \cdot \frac{r}{r} \right) = -\frac{2}{r^3} \bar{r}.$
21.	Show that $\overline{E} = \frac{r}{r^2}$ is irrotational.
22.	Calculate $\nabla^2 f$ when $f = 3x^2z - y^2z^3 + 4x^3y + 2x - 3y - 5$ at the point (1,1,0).
23.	Prove that $\nabla\left(r\nabla\frac{1}{r^n}\right) = \frac{n(n-2)}{r^{n+1}}$.
24.	Prove that $\nabla^2 f(r) = \frac{d^2 f}{dr^2} + \frac{2}{r} \frac{df}{dr}$, where $\bar{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$.
Unit-4	Vector calculus and its Applications
[A]	5 – Marks Questions
1.	State stokes' theorem.
2.	State Green's theorem.
3.	State Gauss' theorem.
4.	Evaluate $\int_c \bar{F} d\bar{r}$ where $\bar{F} = (3x^2 + 6y)\hat{i} - 14yz\hat{j} + 20xz^2\hat{k}$ and C is the straight line
	joining the points (0,0,0) to (1,1,1).
5.	Find the work done in moving a particle from $A(1,0,1)$ to $B(2,1,2)$ along the straight
	line <i>AB</i> in the force field $\overline{F} = x^2 \hat{\imath} + (x - y)\hat{\jmath} + (y + z)\hat{k}$.
6.	Evaluate $\iint_{s} \bar{F} \hat{n} ds$, where $\bar{F} = 18z\hat{i} - 12\hat{j} + 3y\hat{k}$ and S is the part of the plane

Semester – II : 60090205 - CC3 Advanced Calculus

	2x + 3y + 6z = 12 in the first octant.
7.	Evaluate $\iint_{c} (yzdydz + xzdzdx + xydxdy)$ over the surface of the sphere
	$x^2 + y^2 + z^2 = 1$ in the positive octant.
8.	Evaluate $\iiint_V \bar{F} dV$ where $\bar{F} = x\hat{i} + y\hat{j} + 2z\hat{k}$ and V is the volume enclosed by the
	planes $x = 0$, $y = 0$, $x = a$, $y = a$, $z = b^2$ and the surface $z = x^2$.
9.	Evaluate $\iiint_V (\nabla \times \overline{F}) dV$, where $\overline{F} = (2x^2 - 3z)\hat{\imath} - 2xy\hat{\jmath} - 4x\hat{k}$ and V is the closed
	region bounded by the plane $x = 0$, $y = 0$, $z = 0$ and $2x + 2y + z = 4$.
10.	Evaluate $\int_{C} \bar{F} d\bar{r}$ along the parabola $y^{2} = x$ between the points (0,0) and (1,1) where
	$\bar{F} = x^2 \hat{\imath} + x y \hat{\jmath}.$
11.	Verify Green's theorem for $\oint [(x^2 - 2xy)dx + (x^2y + 3)dy]$ where C is the boundary
	of the region bounded by the parabola $y = x^2$ and the line $y = x$.
12.	Verify Green's theorem for $\oint [(y - sinx)dx + cosxdy]$ where C is the plane triangle
	enclosed by the lines $y = 0, x = \frac{\pi}{2}, y = \frac{2x}{\pi}$.
13.	Verify stokes' theorem for the vector field $\overline{F} = (x^2 - y^2)\hat{i} + 2xy\hat{j}$ in the rectangular
	region in the xy-plane bounded by the lines $x = -a$, $x = a$, $y = 0$, $y = b$.
14.	Verify stokes' theorem for $\overline{F} = (x + y)\hat{\imath} + (y + z)\hat{\jmath} - x\hat{k}$ and S is the surface of the
	plane $2x + y + z = 2$ which is in the first octant.
15.	Verify Gauss' divergence theorem for $\overline{F} = 4xz\hat{\iota} - y^2\hat{j} + yz\hat{k}$ over the cube
	x = 0, x = 1, y = 0, y = 1, z = 0, z = 1
16.	Verify Gauss' divergence theorem for $\overline{F} = 2x^2y\hat{\imath} - y^2\hat{\jmath} + 4xz^2\hat{k}$ over the region
	bounded by the cylinder $y^2 + z^2 = 9$ and the plane $x = 2$ in the first octant.

