

Semester – I: 060090105 - CC1 Differential and Integral Calculus

Question Bank

Unit-1	Differential calculus : Hyperbolic functions
[A]	5 – Marks Questions
1.	Rewrite the expression in terms of exponential forms and simplify the results as
	much as you can.
	a) 2cosh(lnx)
2.	b) sinh(2lnx) Rewrite the expression in terms of exponential forms and simplify the results as
Δ.	much as you can.
	a) $\cosh 7x + \sinh 7x$
	b) $(\sinh x + \cosh x)^2$
3.	Prove the identities
	a) $\sinh 2x = 2 \sinh x \cosh x$.
	b) $\cosh^2 x + \sinh^2 x$.
4.	Find the derivatives of y with respect to the appropriate variable.
	a) $y = 6 \sinh \frac{x}{3}$
	b) $y = 2\sqrt{t} \tanh \sqrt{t}$
5.	Find the derivatives of y with respect to the appropriate variable.
	a) $y = \ln(\sinh z)$
	b) $y = \ln \cosh v - \frac{1}{2} \tanh^2 v$
6.	Find the derivatives of y with respect to the appropriate variable.
	a) $y = \sinh^{-1}\sqrt{x}$
7	b) $y = \cosh^{-1}x - \operatorname{xsech}^{-1}x$
7.	Find the derivatives of y with respect to the appropriate variable. a) $y = (1 - \theta) \tanh^{-1} \theta$
	b) $y = sinh^{-1}(tanx)$
8.	Evaluate the integrals
-	a) $\int \sinh 2x dx$
	b) $\int \tanh \frac{x}{z} dx$
9.	Evaluate the integrals
	a) $\int \operatorname{sech}^2(x-\frac{1}{2})dx$
	b) $\int_0^{\ln 2} 4e^x \sinh x dx$
	$J_0 = 4e^{-5\pi i \pi x dx}$
10.	Evaluate the integrals
	a) $\int_0^{2\sqrt{3}} \frac{dx}{\sqrt{4+x^2}}$
	b) $\int_{\frac{5}{4}}^{\frac{2}{5}} \frac{dx}{1-x^2}$
	4
11.	If $x = a(\cos\theta + \theta\sin\theta)$, $y = a(\sin\theta - \theta\cos\theta)$, find $\frac{d^2y}{dx^2}$.
12.	If $x = a(\cos\theta + \theta\sin\theta)$, $y = a(\sin\theta - \theta\cos\theta)$, find $\frac{d^2y}{dx^2}$. If $P^2 = a^2\cos^2\theta + b^2\sin^2\theta$, prove that $P + \frac{d^2P}{d\theta^2} = \frac{a^2b^2}{P^3}$.
13.	If $y = sin(sin x)$, prove that $\frac{d^2y}{dx^2} + tanx\frac{dy}{dx} + ycos^2x = 0$
14.	If $y = a\cos(\log x) + b\sin(\log x)$, show that $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$ If $x = \sin t$, $y = \sin pt$ then prove that $(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + p^2y = 0$.
15.	If x = sin t, y = sin pt then prove that $(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + p^2y = 0.$

Semest	er – I : 060090105 - CC1 Differential and Integral Calculus
16.	If $y = e^{-x}(A\cos x + B\sin x)$, prove that $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 0$
17.	If $y = Ae^{px} + Be^{qx}$, show that $\frac{d^2y}{dx^2} - (p+q)\frac{dy}{dx} + pqy = 0$
18.	If $x = \log \phi$, $y = \phi^2 - 1$. Find $\frac{d^2y}{dx^2}$.
19.	Find $(x^2e^x\cos x)_n$ by Leibnitz's theorem.
20.	Find $y_n(0)$ when $y = \log(x + \sqrt{1 + x^2})$
21.	Find the first and second derivatives of the functions
	a) $s = \frac{t^2 + 5t - 1}{t^2}$
	b) $w = 3z^7 - 7z^3 + 21z^2$
22.	Find the first and second derivatives of the functions
	a) $w = 2p^5 - 7p^3 + 21p^2 + 12p + 6$
	b) $z = \sin y + y \cos y$
23.	Use Leibniz's rule to find the derivatives of the functions
	a) $\int_{x^3}^{x^2} (1+t^2)^{-3} dt$
	b) $\int_{\cos x}^{\sin x} \frac{1}{1-t^2} dt$
Unit-2	Differential calculus : L'Hospital's rule
[A]	5 - Marks Questions
1.	Explain the following terms:
	a) Point of inflexion.
	b) Concave upwards.
2.	Explain the following terms: a) Convex downwards.
	b) Concave downwards.
3.	Find the ranges of values of x for which the curve
5.	$y = x^4 - 6x^3 + 12x^2 + 5x + 7$
	$y = 3x^5 - 40x^3 + 3x - 20$
4.	Show that the curve $(a^2 + x^2)y = a^2x$ has three point of inflexion.
5.	Find the point of inflexion on the curve
	a) $y = ax^3 + bx^2 + cx + d$
6.	b) $x = 3y^4 - 4y^3 + 5$ c) $x = (y - 1)(y - 2)(y - 3)$
0.	
	d) $y = \frac{(x^3 - x)}{3x^2 + 1}$
7.	Show that the curve $ay^2 = x(x - a)(x - b)$ has two and, only two point of inflexion.
8.	Determine the limit of the following $(0/0)$
	a) $\lim_{x \to 1} \frac{1}{1 - 2x + x^2}$
	a) $\lim_{x \to 1} \frac{1 + \log x - x}{1 - 2x + x^2}$ b) $\lim_{x \to 0} \frac{\sinh x - x}{\sin x - x \cos x}$
9.	Determine the limit of the following (0/0)
	a) $\lim_{x\to 0} \frac{a^x - 1 - x \log_e a}{x^2}$
	a) $\lim_{x \to 0} \frac{a^{x} - 1 - x \log_e a}{x^2}$ b) $\lim_{x \to 0} \frac{a^{x} - b^{x}}{x}$
10.	Determine the limit of the following (∞/∞)
10.	
	a) $\lim_{x \to a} \frac{\log(x-a)}{\log(e^x - e^a)}$

	b) $\lim_{x \to \frac{\pi}{2}} \frac{\tan 3x}{\tan x}$
11.	Determine the limit of the following $0^*\infty$
	a) $\lim_{x\to 0} x \log x$
	b) $\lim_{x\to 0} x\log \tan x$
12.	Determine the limit of the following $\infty - \infty$
	a) $\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right)$
	b) $\lim_{x\to 2} \left\{ \frac{1}{x-2} - \frac{1}{\log(x-1)} \right\}$
13.	Prove that the following:
	a) $\lim_{x\to 0} (a^x + x)^{\frac{1}{x}} = ae.$
	b) $\lim_{x\to 0} \left(\frac{a^x + b^x}{2}\right)^{\frac{1}{x}} = \sqrt{ab}$
14.	Prove that the following:
	a) $\lim_{x\to 0} \left(\frac{a^{x}+b^{x}+c^{x}}{3}\right)^{\frac{1}{x}} = \sqrt[3]{abc}$
	b) $\lim_{x\to\infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}} + c^{\frac{1}{x}} + d^{\frac{1}{x}}}{4}\right)^x = \sqrt[4]{abcd}$
15.	Prove that the following:
15.	
	a) $\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}} = e^{\frac{1}{3}}$
	b) $\lim_{x\to 0} \left(\frac{\sinh x}{x}\right)^{\frac{1}{x^2}} = e^{\frac{1}{6}}$
16.	Trace the curve : $y = x^3 - 12x - 16$
17.	Trace the curve : $y = -\frac{3}{2}x^4 + 4x^3 + 3x^2 - 12x$. Trace the curve : $y = \frac{8a^3}{x^2 + 4a^2}$ Trace the curve : $y^2(a^2 + x^2) = x^2(a^2 - x^2)$
18.	Trace the curve : $y = \frac{8a^3}{x^2 + 4a^2}$
19.	Trace the curve : $y^2(a^2 + x^2) = x^2(a^2 - x^2)$
20.	Trace the curve : $y^2x^2 = x^2 - a^2$
21.	Trace the curve with parametric equation : $x = a\cos^3\theta$, $y = b\sin^3\theta$
22.	Trace the curve with parametric equation : $x = a(\theta + \sin\theta)$, $y = a(1 + \cos\theta)$
23.	Trace the curve : $r = a(1 + cos\theta)$
24.	Trace the curve : $r = asin3\theta$
25.	Find limit of $f(x) = \frac{e^{x} - e^{-x} - 2x}{x^{2} \sin x}$, where $x \to 0$
26.	Find limit of $f(x) = \frac{e^x - e^{-x} - 2x}{x^2 \sin x}$, where $x \to 0$ Prove that, $\lim_{x\to 0} \left(\frac{1}{x}\right)^{1-\cos x} = 0$
27.	Prove that, $\lim_{x\to 0} (1 + \sin x)^{\cot x} = e$
28.	Evaluate $\lim_{x \to \frac{\pi}{2}} (\cos x)^{\cos x}$
29.	Determine the values of the following
	(a) $\lim_{x\to 0} \frac{\log \tan x}{\log x}$, (b) $\lim_{x\to 0} \frac{\log \sin 2x}{\log \sin x}$
Unit-3	Integral Calculus
[A]	1 - Mark Questions
1.	Write the formula for integration by part.

Semest	er – I: 060090105 - CC1 Differential and Integral Calculus
2.	Evaluate the integral $\int x \sin \frac{x}{2} dx$
3.	Give the expression of $\int \sin^n x dx$
4.	Give the expression of $\int \sin mx \cos nx dx$
5.	Give the expression of $\int \cos mx \cos nx dx$
6.	Give the expression of $\int \cos^n x dx$
7.	Evaluate the integral $\int x^2 \sin x dx$
8.	Evaluate the integral $\int t^2 \cos t dt$
9.	Evaluate the integral $\int x e^x dx$
10.	Evaluate the integral $\int x \sec^2 x dx$
11.	Evaluate the integral $\int x^2 e^{-x} dx$
12.	Evaluate the integral $\int e^{\theta} \sin\theta d\theta$
13.	Evaluate the integral $\int e^{-2x} \sin 2x dx$
14.	Evaluate the integral $\int e^{-x} \cos x dx$
15.	What is the formula to find volume of a solid by Slicing method?
16.	Give the formula of Disk method to find the volume of a solid revolute about x-axis.
17.	Write formula of Washer method to find the volume of a solid revolute about x-axis.
18.	Write formula of Cylindrical Shell method to find the volume of a solid revolute about x-axis.
[B]	3 – Marks Questions
1.	Answer the following: $\int 3 \sec^4 3x dx$
2.	Answer the following: $\int \cos 2x \ dx$
3.	Answer the following: $\int \sec^3 x \tan x dx$
4.	Answer the following: $\int sin 3x \cos 2x dx$
5.	Answer the following: $\int_{0}^{\pi/2} sinx \cos x dx$
6.	Answer the following: $\int \sec x \tan^2 x dx$
7.	Answer the following: $\int \sec^2 x \tan x dx$
8.	Answer the following: $\int sin 2x \cos 3x dx$
9.	Answer the following: $\int \sin^3 x \cos^3 x dx$
10.	Answer the following: $\int sin^3 x \cos 2x dx$
11.	Answer the following: $\int \sin^4 x \cos 2x dx$
12.	Answer the following: $\int \cos^3 x \sin 2x dx$
13.	Answer the following: $\int \cos^3 4x dx$
14.	Answer the following: $\int \cos^2 2x \sin x dx$
15.	Answer the following: $\int \sin^3 x dx$
16.	Answer the following: $\int_{-\pi}^{\pi} \sin 3x \cos 3x dx$
17.	Answer the following: $\int \cos^3 x \ sinx \ dx$
18.	Answer the following: $\int \sin^2 x \cos 3x dx$
19.	Answer the following: $\int \cos 2x dx$
20.	Answer the following: $\int_{-\pi/2}^{\pi/2} \cos x \cos 7x$
21.	Answer the following: $\int t^2 e^{4t} dt$
[C]	5 – Marks Questions
1.	The base of a solid is the region bounded by the graphs of $y=3x$, $y = 6$ and $x = 0$. The cross-sections perpendicular to the x-axis are rectangular of height 10.

	er – I : 060090105 - CC1 Differential and Integral Calculus
2.	Find the volume of solids generated by revolving the region by the lines and curves about x -axis: $y = x^2$, $y = 0$ and $x = 2$.
3.	Find the volume of solids generated by revolving the regions bounded by the lines and curves about x – axis.
	$Y = 2\sqrt{x}, y = 2 \text{ and } x = 0.$
4.	Using integration by parts to establish the reduction formula;
	$\int x^n \cos x dx = x^n \sin x - n \int x^{n-1} \sin x dx$
5.	Find the volume of solids generated by revolving the regions bounded by the lines and gumung about y_{-} and $y_{-} = 0$
6.	and curves about x – axis. y= x, y = 1 and x = 0. Use shell method to find the volume of the solids generated by revolving the regions
0.	bounded by the curves and lines about y-axis. $y = 2x$, $y = x/2$ and $x = 1$.
7.	The base of a solid is the region bounded by the graphs of $y = \sqrt{x}$ and $y = x/2$. The cross section perpendiculars to the x-axis are isosceles triangle of height 6.
8.	Find the volume of solids generated by revolving the region by the lines and curves
	about y -axis: $x = 2/(y+1)$, $x = 0$, $y = 0$, $y = 3$.
9.	Use shell method to find the volume of the solids generated by revolving the regions bounded by the curves and lines about y-axis. $y = x$, $y = -x/2$ and $x = 2$.
10.	Using integration by parts to establish the reduction formula;
	$\int x^n \sin x dx = -x^n \cos x + n \int x^{n-1} \cos x dx$
11.	Find the volume of solids generated by revolving the region by the lines and curves
	about y -axis: $x = \sqrt{2sin^2y}$, $0 \le y \le \pi/2$, $x = 0$.
12.	Find the volume of solids generated by revolving the regions bounded by the lines and curves about $x - axis$. $y = x^2 + 1$, $y = x + 3$.
13.	Using integration by parts to establish the reduction formula;
	$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx , a \neq 0$
14.	Find the volume of solids generated by revolving the region by the lines and curves about y -axis: $x = y^{3/2}$, $x = 0$ and $y = 2$.
15.	Find the volume of solids generated by revolving the regions bounded by the lines and curves about x – axis. $y = 4 - x^2$, $y = 2 - x$.
16.	Using integration by parts to establish the reduction formula;
	$\int (lnx)^n dx = x (lnx)^n - n \int (lnx)^{n-1} dx$
17.	Find the volume of solids generated by revolving the region by the lines and curves
10	about y -axis: $x = \sqrt{5} y^2$, $x = 0$, $y = -1$, $y = 1$.
18.	Find the volume of solids generated by revolving the region about y –axis: Region enclosed by the triangle with vertices (1,0), (2,1) and (1,1).
19.	The base of a solid is the region bounded by the graphs of $y = \sqrt{x}$ and $y = x/2$. The cross section perpendiculars to the x-axis are semi-circles with diameter running across the base of the solid.
20.	Find the volume of solids generated by revolving the region by the lines and curves
	about x -axis: $y = \sqrt{cosx}$ $0 \le x \le \frac{\pi}{2}$, $y = 0$ and $x=0$.
21.	Find the volume of solids generated by revolving the region about y –axis: Region enclosed by the triangle with vertices (0,1), (1,0) and (1,1).
22.	The solid is lies between planes perpendicular to the x-axis at $x = -1$ and $x = 1$. The

	-
	cross sections perpendicular to the x-axis between these plane are squares whose
	bases run from the semi-circle $y = -\sqrt{1 - x^2}$ to the semi-circle $y = \sqrt{1 - x^2}$.
23.	Find the volume of solids generated by revolving the region by the lines and curves
	about x -axis: $y = x - x^2$ and $y = 0$.
24.	Find the volume of solids generated by revolving the region about y –axis:
	Region in the first quadrant bounded above by the parabola $y = x^2$, below by the x-
	axis, and on the right by the line x =2
25.	Find the volume of solids generated by revolving the region by the lines and curves
	about x -axis: $y = \sqrt{9 - x^2}$ and $y = 0$.
26.	Find the volume of solids generated by revolving the region about y –axis:
	Region in the first quadrant bounded on left by the circle $x^2+y^2 = 3$, on the right by the
	line x = $\sqrt{3}$ and above by the line y = $\sqrt{3}$.
27.	Find the volume of solids generated by revolving the region by the lines and curves
27.	about x-axis: $y = x^3$, $y = 0$ and $x = 2$.
28.	Find the volume of solids generated by region in the first quadrant bounded above by
20.	the curve $y = x^2$, below by the x-axis, and on the right by the line $x = 1$, about the line x
	=-1.
29.	Use shell method to find the volume of the solids generated by revolving the regions
	bounded by the curves and lines about y-axis. $y = x^2$, $y = 2 - x$ and $x = 0$.
Unit-4	Multiple Integral and its application:
[A]	1 – Mark Questions
1.	
1. 2.	Write the formula of length (arc length) for curve y=f(x). What is the Fubini's theorem (First form) to find volume of a solid?
3.	
3. 4.	Write the formula of length (arc length) for curve x=g(y).
4.	What is the Fubini's theorem (stronger form) to find volume of a solid over general region?
5.	Write a formula for area of surface generated revolving the graph of $y = f(x)$ about $x - y$
Э.	axis.
6.	How to find the average value of function f over region R.
7.	Write a formula for area of surface generated revolving the graph of $x = g(y)$ about $y = g(y)$
/.	axis.
8.	Give the formula to find the area of closed bounded region R in polar coordinate
0.	plane.
9.	Find the length of arc $x = (y^4/4) + 1/(8y^2)$, from y=1 to y=2.
9.	1^{1110} the length of arc x- (y 7/4) + 1/(0y ⁻), from y-1 to y-2.
10.	How to find the volume of a closed bounded region D in space using triple integration
11.	Sketch the region bounded by the given lines and curves. The coordinates of axes and
	the line $x + y = 2$.
12.	Write the formula of length (arc length) for curve $y=f(x)$.
13.	Write the formula to derive average value of function F over a region D in space.
13.	Sketch the region bounded by the given lines and curves. The lines $x = 0$, $y = 2x$ and y
	=4.
15.	Sketch the region bounded by the given lines and curves. Parabola $x = -y^2$, and line $y = -y^2$
1 10.	
16	x + 2.
<u>16.</u>	x + 2. Write the formula of length (arc length) for curve x=f(y).
16. 17.	x + 2.

18.	What is the Fubini's theorem (First form) to find volume of a solid.
19.	Write the formula to find mass using triple integrals.
20.	Sketch the region bounded by the given lines and curves. Parabola $y^2 = 4 - x$, and line
	$y^2 = x.$
[B]	3 – Marks Questions
1.	Find the area of surface generated by revolving curve about y – axis, $x = y^3/3$
	$0 \le y \le 1$
2.	Write the iterated integral over the described region R using (1) vertical cross –
	section (2) Horizontal cross-section. Bounded by y = 2x and x = 3.
3.	Find the area of surface generated by revolving curve about $x - axis$, $y^2 = 4 + x$,
	$-4 \le x \le 2$
4.	Write the iterated integral over the described region R using (1) vertical cross –
	section (2) Horizontal cross-section. Bounded by $y = x^2$ and $y = x + 2$.
5.	Find the area of surface generated by revolving curve about x – axis, y = $\sqrt{2x - x^2}$,
	$0.5 \le x \le 1.5$
6.	Write the iterated integral over the described region R using (1) vertical cross –
	section (2) Horizontal cross-section. Bounded by $y = 3 - 2x$, $y = x$ and $x = 0$.
7.	Find the area of surface generated by revolving curve about x – axis, y = \sqrt{x} ,
	$3/4 \le x \le 15/4$
8.	Write the iterated integral over the described region R using (1) vertical cross –
	section (2) Horizontal cross-section. Bounded by $y = 0$, $x = 0$, $y = 1$ and $y = \ln x$.
9.	Find the area of surface generated by revolving curve about $x - axis$, $y = x^3/9$,
	$0 \le x \le 2$
10.	Write the iterated integral over the described region R using (1) vertical cross –
	section (2) Horizontal cross-section. Bounded by $y = e^{-x}$, $y = 1$ and $x = \ln 3$.
11.	Write the iterated integral over the described region R using (1) vertical cross –
10	section (2) Horizontal cross-section. Bounded by $y = nx$, $x=0$ and $y = 1$.
12.	Change the Cartesian integral into equivalent polar integral and evaluate the polar $\sqrt{4 + e^2}$
	integral. $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} dy dx$
13.	Find the length of arc $x = (y^{3/2}/3) - y^{1/2}$ from y=1 to y=9.
14.	Write the iterated integral over the described region R using (1) vertical cross –
	section (2) Horizontal cross-section. Bounded by $y = \sqrt{x}$, y=0 and x =9.
15.	Find the length of arc $x = (y^3/3) + 1/(4y)$, from y=1 to y=3.
16.	Evaluate the iterated integral: $\int_{-1}^{0} \int_{-1}^{1} x + y + 1 dx dy$
17.	Find the length of arc $y = x^{3/2}$, from x =0 to x = 4.
18.	Evaluate the iterated integral: $\int_{0}^{1} \int_{1}^{2} x(x + y) dy dx$
19.	Find the length of arc $y = (1/3)(x^2+2)^{3/2}$, from $x = 0$ to $x = 3$.
20.	Evaluate the iterated integral: $\int_{1}^{2} \int_{0}^{4} 2xy dy dx$
[C]	5 – Marks Questions
1.	Find the volume of the region bounded above by the parabolic $z = x^2 + y^2$ and below
	by the square R: $-1 \le x \le 1$, $-1 \le y \le 1$.
2.	Find the volume of the region bounded above by the paraboloid $z = x^2 + y^2$ and below
	by the triangle enclosed by the lines $y = x$, $x = 0$, and $x + y = 2$ in xy-plane.
3.	Evaluate the integrals. $\int_0^1 \int_0^1 \int_0^1 (x^2 + y^2 + z^2) dz dy dx$
4.	Find the volume of the region bounded above by the parabolic $z = 16 - x^2 + y^2$ and
4.	Find the volume of the region bounded above by the parabolic $z = 10 - x^2 + y^2$ and

	below by the square R: $0 \le x \le 2, 0 \le y \le 2$.
5.	Evaluate the integrals. $\int_{-1}^{1} \int_{0}^{1} \int_{0}^{2} (x + y + z) dz dy dx$
6.	Find the center of mass of thin plate of density $\delta = 3$ bounded by the lines x = 0, y = x, and the parabola y = 2 - x ² in the first quadrant.
7.	Find the volume of the region bounded above by the parabolic $z = 2 - x - y$ and below by the square $R:0 \le x \le 1, 0 \le y \le 1$.
8.	Evaluate the integrals. $\int_0^{ln2} \int_0^x \int_0^{x+y} e^{x+y+z} dz dy dx$
9.	Find the centroid of region in the first quadrant bounded by the x-axis, the parabola $y^2 = 2x$, and the line $x + y = 4$.
10.	Find the volume of the region bounded above by the parabolic $z = y/2$ and below by
11.	the rectangle R: $0 \le x \le 4, 0 \le y \le 2$.Find the volume of the region bounded above by the cylinder $z = x^2$ and below by the triangle enclosed by the parabola $y = 2 - x^2$, and line $y = x$ in xy-plane.
12.	Find the centroid of the triangular region cut from the first quadrant by the line $x + y = 3$.
13.	Find the volume of the region bounded above by the parabolic $z = 2$ sinxcosy and below by the rectangle R: $0 \le x \le \pi/2$, $0 \le y \le \pi/4$.
14.	Evaluate the integrals. $\int_0^{\pi/6} \int_0^1 \int_{-2}^3 y \sin z dx dy dz$
15.	Find the centroid of region cut from the first quadrant by the circle $x^2 + y^2 = a^2$.
16.	Find the volume of the region bounded above by the parabolic $z = 4 - y^2$ and below by the rectangle R: $0 \le x \le 1$, $0 \le y \le 2$.
17.	Find the volume of the regions between the plane $x + y + 2z = 2$ and $2x + 2y + z = 4$ in the first octant.
18.	Find the centroid of the region between the x – axis and the arch y = sinx, $0 \le x \le \pi$.
19.	Find the volume of the region bounded above by the parabolic $z = 6 y^2 - 2x$ and below by the rectangle R: $0 \le x \le 1$, $0 \le y \le 2$.
20.	Find the volume of the solid whose base is the region in xy-plane that is bounded by the parabola $y = 4 - x^2$ and the line $y = 3x$, while the top of solid is bounded by the plane $z = x + 4$.
21.	Find the mass of the thin plate occupying the smaller region cut from the ellipse $x^2 + 4y^2 = 12$ by the parabola $x = 4y^2$ if $\delta(x, y) = 5x$.
22.	Find the volume of the region bounded above by the parabolic $z = x^2 + y^2$ and below by the rectangle R: $1 \le x \le 2$, $0 \le y \le 1$.
23.	Find the volume of the finite region bounded by the planes $z = x$, $x + z = 8$, $z = y$, $y = 8$ and $z = 0$.
24.	Find center of mass of thin triangular plate bounded by the y-axis and the lines $y = x$ and $y = 2 - x$ if $\delta(x, y) = 6x + 3y + 3$.
25.	Find the volume of the region bounded above by the parabolic $z = y \sin(x+y)$ and below by the rectangle $R:-\pi \le x \le 0, 0 \le y \le \pi$.
26.	Find the volume of the portion of the cylinder $x^2 + y^2 = 1$ intercepted between the
27.	plane z = 0 and the paraboloid $x^2 + y^2 = 4 - z$. Evaluate the integrals. $\int_0^1 \int_0^{2-x} \int_0^{2-x-y} dz dy dx$
28.	Find the volume of the region bounded above by the parabolic $z = 1/(x+y)^2$ and below by the rectangle R: $1 \le x \le 2$, $3 \le y \le 4$.
29.	Find the volume of the solid in the first octant bounded by the coordinate planes, the plane $x = 3$ and the parabolic cylinder $z = 4 - y^2$.

Semester – I: 060090105 - CC1 Differential and Integral Calculus

30. Evaluate the integrals. $\int_0^1 \int_0^{1-x} \int_0^{4-x^2-y} x \, dz \, dy \, dx$

