DEPARTMENT OF MATHEMATICS

Semester - I: 060090105 - CC1 Differential and Integral Calculus

Question Bank

Unit-1	Differential calculus : Hyperbolic functions
[A]	5 - Marks Questions
1.	Rewrite the expression in terms of exponential forms and simplify the results as much as you can. a) $2 \cosh (\ln x)$ b) $\sinh (2 \ln x)$
2.	Rewrite the expression in terms of exponential forms and simplify the results as much as you can. a) $\cosh 7 x+\sinh 7 x$ b) $(\sinh x+\cosh x)^{2}$
3.	Prove the identities a) $\sinh 2 x=2 \sinh x \cosh x$. b) $\cosh ^{2} x+\sinh ^{2} x$.
4.	Find the derivatives of y with respect to the appropriate variable. a) $y=6 \sinh \frac{x}{3}$ b) $y=2 \sqrt{t} \tanh \sqrt{t}$
5.	Find the derivatives of y with respect to the appropriate variable. a) $y=\ln (\sinh z)$ b) $y=\ln \cosh v-\frac{1}{2} \tanh ^{2} v$
6.	Find the derivatives of y with respect to the appropriate variable. a) $y=\sinh ^{-1} \sqrt{x}$ b) $y=\cosh ^{-1} x-x \operatorname{sech}^{-1} x$
7.	Find the derivatives of y with respect to the appropriate variable. a) $y=(1-\theta) \tanh ^{-1} \theta$ b) $y=\sinh ^{-1}(\tan x)$
8.	Evaluate the integrals a) $\int \sinh 2 x d x$ b) $\int \tanh \frac{x}{7} d x$
9.	Evaluate the integrals a) $\int \operatorname{sech}^{2}\left(x-\frac{1}{2}\right) d x$ b) $\int_{0}^{\ln 2} 4 e^{x} \sinh x d x$
10.	Evaluate the integrals a) $\int_{0}^{2 \sqrt{3}} \frac{d x}{\sqrt{4+\mathrm{x}^{2}}}$ b) $\int_{\frac{5}{4}}^{2} \frac{d x}{1-x^{2}}$
11.	$\text { If } x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta), \text { find } \frac{d^{2} y}{d x^{2}}$
12.	If $\mathrm{P}^{2}=\mathrm{a}^{2} \cos ^{2} \theta+\mathrm{b}^{2} \sin ^{2} \theta$, prove that $\mathrm{P}+\frac{\mathrm{d}^{2} \mathrm{P}}{\mathrm{d} \theta^{2}}=\frac{\mathrm{a}^{2} \mathrm{~b}^{2}}{\mathrm{P}^{3}}$.
13.	If $y=\sin (\sin x)$, prove that $\frac{d^{2} y}{d x^{2}}+\tan x \frac{d y}{d x}+y \cos ^{2} x=0$
14.	If $y=\operatorname{acos}(\log x)+b \sin (\log x)$, show that $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$
15.	If $x=\sin t, y=\sin p t$ then prove that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+p^{2} y=0$.

DEPARTMENT OF MATHEMATICS

Semester - I : 060090105 - CC1 Differential and Integral Calculus

16.	If $y=e^{-x}(A \cos x+B \sin x)$, prove that $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=0$
17.	If $y=A e^{p x}+B e^{q x}$, show that $\frac{d^{2} y}{d x^{2}}-(p+q) \frac{d y}{d x}+p q y=0$
18.	$\text { If } x=\log \emptyset, y=\emptyset^{2}-1 \text {. Find } \frac{d^{2} y}{d x^{2}} .$
19.	Find ($\left.\mathrm{x}^{2} \mathrm{e}^{\mathrm{x}} \cos \mathrm{x}\right)_{\mathrm{n}}$ by Leibnitz's theorem.
20.	Find $y_{n}(0)$ when $\mathrm{y}=\log \left(\mathrm{x}+\sqrt{1+\mathrm{x}^{2}}\right)$
21.	Find the first and second derivatives of the functions a) $\mathrm{s}=\frac{\mathrm{t}^{2}+5 \mathrm{t}-1}{\mathrm{t}^{2}}$ b) $\mathrm{w}=3 \mathrm{z}^{7}-7 \mathrm{z}^{3}+21 \mathrm{z}^{2}$
22.	Find the first and second derivatives of the functions a) $w=2 p^{5}-7 p^{3}+21 p^{2}+12 p+6$ b) $z=\sin y+y \cos y$
23.	Use Leibniz's rule to find the derivatives of the functions a) $\int_{x^{3}}^{x^{2}}\left(1+t^{2}\right)^{-3} d t$ b) $\int_{\cos x}^{\sin x} \frac{1}{1-t^{2}} d t$
Unit-2	Differential calculus : L'Hospital's rule
[A]	5 - Marks Questions
1.	Explain the following terms: a) Point of inflexion. b) Concave upwards.
2.	Explain the following terms: a) Convex downwards. b) Concave downwards.
3.	Find the ranges of values of x for which the curve $\begin{aligned} & y=x^{4}-6 x^{3}+12 x^{2}+5 x+7 \\ & y=3 x^{5}-40 x^{3}+3 x-20 \end{aligned}$
4.	Show that the curve ($\left.a^{2}+x^{2}\right) y=a^{2} x$ has three point of inflexion.
5.	Find the point of inflexion on the curve a) $y=a x^{3}+b x^{2}+c x+d$ b) $x=3 y^{4}-4 y^{3}+5$
6.	c) $x=(y-1)(y-2)(y-3)$ d) $y=\frac{\left(x^{3}-x\right)}{3 x^{2}+1}$
7.	Show that the curve $\mathrm{ay}^{2}=\mathrm{x}(\mathrm{x}-\mathrm{a})(\mathrm{x}-\mathrm{b})$ has two and, only two point of inflexion.
8.	Determine the limit of the following ($0 / 0$) a) $\lim _{x \rightarrow 1} \frac{1+\log x-x}{1-2 x+x^{2}}$ b) $\lim _{x \rightarrow 0} \frac{\sinh x-x}{\sin x-x \cos x}$
9.	Determine the limit of the following ($0 / 0$) a) $\lim _{x \rightarrow 0} \frac{a^{x}-1-x \log _{e} a}{x^{2}}$ b) $\lim _{x \rightarrow 0} \frac{a^{x}-b^{x^{x}}}{x}$
10.	Determine the limit of the following (∞ / ∞) a) $\lim _{x \rightarrow a} \frac{\log (x-a)}{\log \left(e^{x}-e^{a}\right)}$

DEPARTMENT OF MATHEMATICS

Semester - I : 060090105 - CC1 Differential and Integral Calculus

	b) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan 3 x}{\tan x}$
11.	Determine the limit of the following $0^{*} \infty$ a) $\lim _{x \rightarrow 0} x \log x$ b) $\lim _{x \rightarrow 0} x \log \tan x$
12.	Determine the limit of the following $\infty-\infty$ a) $\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right)$ b) $\lim _{x \rightarrow 2}\left\{\frac{1}{x-2}-\frac{1}{\log (x-1)}\right\}$
13.	Prove that the following: a) $\lim _{x \rightarrow 0}\left(a^{x}+x\right)^{\frac{1}{x}}=a e$. b) $\lim _{x \rightarrow 0}\left(\frac{a^{x}+b^{x}}{2}\right)^{\frac{1}{x}}=\sqrt{a b}$
14.	Prove that the following: a) $\lim _{x \rightarrow 0}\left(\frac{a^{x}+b^{x}+c^{x}}{3}\right)^{\frac{1}{x}}=\sqrt[3]{a b c}$ b) $\lim _{x \rightarrow \infty}\left(\frac{{\frac{1}{\frac{a}{x}}+b^{\frac{1}{x}}+c^{\frac{1}{x}}+d^{\frac{1}{x}}}_{x}^{x}}{4}=\sqrt[4]{a b c d}\right.$
15.	Prove that the following: a) $\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{\frac{1}{x^{2}}}=e^{\frac{1}{3}}$ b) $\lim _{x \rightarrow 0}\left(\frac{\operatorname{sinhx}}{x}\right)^{\frac{1}{x^{2}}}=e^{\frac{1}{6}}$
16.	Trace the curve: $\mathrm{y}=\mathrm{x}^{3}-12 \mathrm{x}-16$
17.	Trace the curve: $\mathrm{y}=-\frac{3}{2} \mathrm{x}^{4}+4 \mathrm{x}^{3}+3 \mathrm{x}^{2}-12 \mathrm{x}$.
18.	Trace the curve : $y=\frac{8 a^{3}}{x^{2}+4 a^{2}}$
19.	Trace the curve : $\mathrm{y}^{2}\left(\mathrm{a}^{2}+\mathrm{x}^{2}\right)=\mathrm{x}^{2}\left(\mathrm{a}^{2}-\mathrm{x}^{2}\right)$
20.	Trace the curve : $\mathrm{y}^{2} \mathrm{x}^{2}=\mathrm{x}^{2}-\mathrm{a}^{2}$
21.	Trace the curve with parametric equation : $\mathrm{x}=\mathrm{acos}^{3} \theta, \mathrm{y}=\mathrm{bsin}^{3} \theta$
22.	Trace the curve with parametric equation : $\mathrm{x}=\mathrm{a}(\theta+\sin \theta), \mathrm{y}=\mathrm{a}(1+\cos \theta)$
23.	Trace the curve : $\mathrm{r}=\mathrm{a}(1+\cos \theta)$
24.	Trace the curve : $\mathrm{r}=\mathrm{asin} 3 \theta$
25.	Find limit of $f(x)=\frac{e^{x}-e^{-x}-2 x}{x^{2} \sin x}$, where $x \rightarrow 0$
26.	Prove that, $\lim _{x \rightarrow 0}\left(\frac{1}{x}\right)^{1-\cos x}=0$
27.	Prove that, $\lim _{x \rightarrow 0}(1+\sin x)^{\text {cotx }}=\mathrm{e}$
28.	Evaluate $\lim _{x \rightarrow \frac{\pi}{2}}(\cos x)^{\cos x}$
29.	Determine the values of the following (a) $\lim _{x \rightarrow 0} \frac{\log \tan x}{\log x}$, (b) $\lim _{x \rightarrow 0} \frac{\log \sin 2 x}{\log \sin x}$
Unit-3	Integral Calculus
[A]	1 - Mark Questions
1.	Write the formula for integration by part.

DEPARTMENT OF MATHEMATICS

Semester - I: 060090105 - CC1 Differential and Integral Calculus

2.	Evaluate the integral $\int x \sin \frac{x}{2} d x$
3.	Give the expression of $\int \sin ^{n} x d x$
4.	Give the expression of $\int \sin m x \cos n x d x$
5.	Give the expression of $\int \cos m x \cos n x d x$
6.	Give the expression of $\int \cos ^{n} x d x$
7.	Evaluate the integral $\int x^{2} \sin x d x$
8.	Evaluate the integral $\int t^{2} \operatorname{cost} d t$
9.	Evaluate the integral $\int x e^{x} d x$
10.	Evaluate the integral $\int x \sec ^{2} x d x$
11.	Evaluate the integral $\int x^{2} e^{-x} d x$
12.	Evaluate the integral $\int e^{\theta} \sin \theta d \theta$
13.	Evaluate the integral $\int e^{-2 x} \sin 2 x d x$
14.	Evaluate the integral $\int e^{-x} \cos x d x$
15.	What is the formula to find volume of a solid by Slicing method?
16.	Give the formula of Disk method to find the volume of a solid revolute about x-axis.
17.	Write formula of Washer method to find the volume of a solid revolute about x-axis.
18.	Write formula of Cylindrical Shell method to find the volume of a solid revolute about x -axis.
[B]	3 - Marks Questions
1.	Answer the following: $\int 3 \sec ^{4} 3 x d x$
2.	Answer the following: $\int \cos 3 \mathrm{x} \cos 4 \mathrm{x} d x$
3.	Answer the following: $\int \sec ^{3} x \tan x d x$
4.	Answer the following: $\int \sin 3 x \cos 2 x d x$
5.	Answer the following: $\int_{0}^{\pi / 2} \sin x \cos x d x$
6.	Answer the following: $\int \sec x \tan ^{2} x d x$
7.	Answer the following: $\int \sec ^{2} x \tan x d x$
8.	Answer the following: $\int \sin 2 x \cos 3 x d x$
9.	Answer the following: $\int \sin ^{3} x \cos ^{3} x d x$
10.	Answer the following: $\int \sin ^{3} x \cos 2 x d x$
11.	Answer the following: $\int \sin ^{4} x \cos 2 \mathrm{x} d x$
12.	Answer the following: $\int \cos ^{3} x \sin 2 x d x$
13.	Answer the following: $\int \cos ^{3} 4 \mathrm{x} d x$
14.	Answer the following: $\int \cos ^{2} 2 x \sin x d x$
15.	Answer the following: $\int \sin ^{3} \mathrm{x} d x$
16.	Answer the following: $\int_{-\pi}^{\pi} \sin 3 x \cos 3 x d x$
17.	Answer the following: $\int \cos ^{3} \mathrm{x} \sin x d x$
18.	Answer the following: $\int \sin ^{2} x \cos 3 x d x$
19.	Answer the following: $\int \cos 2 x d x$
20.	Answer the following: $\int_{-\pi / 2}^{\pi / 2} \cos x \cos 7 x$
21.	Answer the following: $\int t^{2} e^{4 t} d t$
[C]	5 - Marks Questions
1.	The base of a solid is the region bounded by the graphs of $y=3 x, y=6$ and $x=0$. The cross-sections perpendicular to the x -axis are rectangular of height 10 .

DEPARTMENT OF MATHEMATICS

Semester-I: 060090105-CC1 Differential and Integral Calculus

2.	Find the volume of solids generated by revolving the region by the lines and curves about x -axis: $\mathrm{y}=\mathrm{x}^{2}, \mathrm{y}=0$ and $\mathrm{x}=2$.
3.	Find the volume of solids generated by revolving the regions bounded by the lines and curves about $\mathrm{x}-\mathrm{axis}$. $\mathrm{Y}=2 \sqrt{x}, \mathrm{y}=2 \text { and } \mathrm{x}=0 .$
4.	Using integration by parts to establish the reduction formula; $\int x^{n} \cos x d x=x^{n} \sin x-n \int x^{n-1} \sin x d x$
5.	Find the volume of solids generated by revolving the regions bounded by the lines and curves about x - axis. $\mathrm{y}=\mathrm{x}, \mathrm{y}=1$ and $\mathrm{x}=0$.
6.	Use shell method to find the volume of the solids generated by revolving the regions bounded by the curves and lines about y-axis. $y=2 x, y=x / 2$ and $x=1$.
7.	The base of a solid is the region bounded by the graphs of $y=\sqrt{x}$ and $y=x / 2$. The cross section perpendiculars to the x -axis are isosceles triangle of height 6 .
8.	Find the volume of solids generated by revolving the region by the lines and curves about y-axis: $x=2 /(y+1), x=0, y=0, y=3$.
9.	Use shell method to find the volume of the solids generated by revolving the regions bounded by the curves and lines about y-axis. $y=x, y=-x / 2$ and $x=2$.
10.	Using integration by parts to establish the reduction formula; $\int x^{n} \sin x d x=-x^{n} \cos x+n \int x^{n-1} \cos x d x$
11.	Find the volume of solids generated by revolving the region by the lines and curves about y -axis: $\mathrm{x}=\sqrt{2 \sin 2 y}, 0 \leq y \leq \pi / 2, \mathrm{x}=0$.
12.	Find the volume of solids generated by revolving the regions bounded by the lines and curves about x - axis. $\mathrm{y}=\mathrm{x}^{2}+1, \mathrm{y}=\mathrm{x}+3$.
13.	Using integration by parts to establish the reduction formula; $\int x^{n} e^{a x} d x=\frac{x^{n} e^{a x}}{a}-\frac{n}{a} \int x^{n-1} e^{a x} d x, \quad a \neq 0$
14.	Find the volume of solids generated by revolving the region by the lines and curves about y-axis: $x=y^{3 / 2}, x=0$ and $y=2$.
15.	Find the volume of solids generated by revolving the regions bounded by the lines and curves about x - axis. $\mathrm{y}=4-\mathrm{x}^{2}, \mathrm{y}=2-\mathrm{x}$.
16.	Using integration by parts to establish the reduction formula; $\int(\ln x)^{n} d x=x(\ln x)^{n}-n \int(\ln x)^{n-1} d x$
17.	Find the volume of solids generated by revolving the region by the lines and curves about y-axis: $x=\sqrt{5} y^{2}, x=0, y=-1, y=1$.
18.	Find the volume of solids generated by revolving the region about y-axis: Region enclosed by the triangle with vertices (1,0), $(2,1)$ and $(1,1)$.
19.	The base of a solid is the region bounded by the graphs of $y=\sqrt{x}$ and $y=x / 2$. The cross section perpendiculars to the x -axis are semi-circles with diameter running across the base of the solid.
20.	Find the volume of solids generated by revolving the region by the lines and curves about x -axis: $\mathrm{y}=\sqrt{\cos x} 0 \leq x \leq \frac{\pi}{2}, \mathrm{y}=0$ and $\mathrm{x}=0$.
21.	Find the volume of solids generated by revolving the region about y -axis: Region enclosed by the triangle with vertices (0,1), $(1,0)$ and $(1,1)$.
22.	The solid is lies between planes perpendicular to the x-axis at $x=-1$ and $x=1$. The

DEPARTMENT OF MATHEMATICS

Semester - I: 060090105 - CC1 Differential and Integral Calculus

	cross sections perpendicular to the x -axis between these plane are squares whose bases run from the semi-circle $y=-\sqrt{1-x^{2}}$ to the semi-circle $y=\sqrt{1-x^{2}}$.
23.	Find the volume of solids generated by revolving the region by the lines and curves about x -axis: $\mathrm{y}=\mathrm{x}-\mathrm{x}^{2}$ and $\mathrm{y}=0$.
24.	Find the volume of solids generated by revolving the region about y-axis: Region in the first quadrant bounded above by the parabola $y=x^{2}$, below by the x axis, and on the right by the line $x=2$
25.	Find the volume of solids generated by revolving the region by the lines and curves about x -axis: $\mathrm{y}=\sqrt{9-x^{2}}$ and $\mathrm{y}=0$.
26.	Find the volume of solids generated by revolving the region about y-axis: Region in the first quadrant bounded on left by the circle $x^{2}+y^{2}=3$, on the right by the line $x=\sqrt{3}$ and above by the line $y=\sqrt{3}$.
27.	Find the volume of solids generated by revolving the region by the lines and curves about x -axis: $\mathrm{y}=\mathrm{x}^{3}, \mathrm{y}=0$ and $\mathrm{x}=2$.
28.	Find the volume of solids generated by region in the first quadrant bounded above by the curve $y=x^{2}$, below by the x-axis, and on the right by the line $x=1$, about the line x $=-1$.
29.	Use shell method to find the volume of the solids generated by revolving the regions bounded by the curves and lines about y -axis. $\mathrm{y}=\mathrm{x}^{2}, \mathrm{y}=2-\mathrm{x}$ and $\mathrm{x}=0$.
Unit-4	Multiple Integral and its application:
[A]	1 - Mark Questions
1.	Write the formula of length (arc length) for curve $y=f(x)$.
2.	What is the Fubini's theorem (First form) to find volume of a solid?
3.	Write the formula of length (arc length) for curve $\mathrm{x}=\mathrm{g}(\mathrm{y})$.
4.	What is the Fubini's theorem (stronger form) to find volume of a solid over general region?
5.	Write a formula for area of surface generated revolving the graph of $y=f(x)$ about x axis.
6.	How to find the average value of function f over region R.
7.	Write a formula for area of surface generated revolving the graph of $x=g(y)$ about y axis.
8.	Give the formula to find the area of closed bounded region R in polar coordinate plane.
9.	Find the length of arc $x=\left(y^{4} / 4\right)+1 /\left(8 y^{2}\right)$, from $y=1$ to $y=2$.
10.	How to find the volume of a closed bounded region D in space using triple integration
11.	Sketch the region bounded by the given lines and curves. The coordinates of axes and the line $\mathrm{x}+\mathrm{y}=2$.
12.	Write the formula of length (arc length) for curve $y=f(x)$.
13.	Write the formula to derive average value of function F over a region D in space.
14.	Sketch the region bounded by the given lines and curves. The lines $x=0, y=2 x$ and y $=4$.
15.	Sketch the region bounded by the given lines and curves. Parabola $x=-y^{2}$, and line $\mathrm{y}=$ $\mathrm{x}+2$.
16.	Write the formula of length (arc length) for curve $\mathrm{x}=\mathrm{f}(\mathrm{y})$.
17.	Sketch the region bounded by the given lines and curves. Parabola $y=4 x-x^{2}$, and line $\mathrm{y}=2$.

DEPARTMENT OF MATHEMATICS

Semester-I: 060090105-CC1 Differential and Integral Calculus

18.	What is the Fubini's theorem (First form) to find volume of a solid.
19.	Write the formula to find mass using triple integrals.
20.	Sketch the region bounded by the given lines and curves. Parabola $y^{2}=4-x$, and line $y^{2}=x$.
[B]	3 - Marks Questions
1.	Find the area of surface generated by revolving curve about $\mathrm{y}-\mathrm{axis}, \mathrm{x}=\mathrm{y}^{3} / 3$ $0 \leq y \leq 1$
2.	Write the iterated integral over the described region R using (1) vertical cross section (2) Horizontal cross-section. Bounded by $y=2 x$ and $x=3$.
3.	Find the area of surface generated by revolving curve about $\mathrm{x}-$ axis, $\mathrm{y}^{2}=4+\mathrm{x}$, $-4 \leq x \leq 2$
4.	Write the iterated integral over the described region R using (1) vertical cross section (2) Horizontal cross-section. Bounded by $y=x^{2}$ and $y=x+2$.
5.	Find the area of surface generated by revolving curve about $\mathrm{x}-\mathrm{axis}, \mathrm{y}=\sqrt{2 x-x^{2}}$, $0.5 \leq x \leq 1.5$
6.	Write the iterated integral over the described region R using (1) vertical cross section (2) Horizontal cross-section. Bounded by $y=3-2 x, y=x$ and $x=0$.
7.	Find the area of surface generated by revolving curve about $\mathrm{x}-$ axis, $\mathrm{y}=\sqrt{x}$, $3 / 4 \leq x \leq 15 / 4$
8.	Write the iterated integral over the described region R using (1) vertical cross section (2) Horizontal cross-section. Bounded by $y=0, x=0, y=1$ and $y=\ln x$.
9.	Find the area of surface generated by revolving curve about $\mathrm{x}-$ axis, $\mathrm{y}=\mathrm{x}^{3} / 9$, $0 \leq x \leq 2$
10.	Write the iterated integral over the described region R using (1) vertical cross section (2) Horizontal cross-section. Bounded by $y=e^{-x}, y=1$ and $x=\ln 3$.
11.	Write the iterated integral over the described region R using (1) vertical cross section (2) Horizontal cross-section. Bounded by $\mathrm{y}=n x, \mathrm{x}=0$ and $\mathrm{y}=1$.
12.	Change the Cartesian integral into equivalent polar integral and evaluate the polar integral. $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} d y d x$
13.	Find the length of arc $\mathrm{x}=\left(\mathrm{y}^{3 / 2} / 3\right)-\mathrm{y}^{1 / 2}$ from $\mathrm{y}=1$ to $\mathrm{y}=9$.
14.	Write the iterated integral over the described region R using (1) vertical cross section (2) Horizontal cross-section. Bounded by $\mathrm{y}=\sqrt{x}, \mathrm{y}=0$ and $\mathrm{x}=9$.
15.	Find the length of arc $\mathrm{x}=\left(\mathrm{y}^{3} / 3\right)+1 /(4 y)$, from $\mathrm{y}=1$ to $\mathrm{y}=3$.
16.	Evaluate the iterated integral: $\int_{-1}^{0} \int_{-1}^{1} x+y+1 d x d y$
17.	Find the length of $\operatorname{arc} \mathrm{y}=\mathrm{x}^{3 / 2}$, from $\mathrm{x}=0$ to $\mathrm{x}=4$.
18.	Evaluate the iterated integral: $\int_{0}^{1} \int_{1}^{2} x(x+y) d y d x$
19.	Find the length of arc $\mathrm{y}=(1 / 3)\left(\mathrm{x}^{2}+2\right)^{3 / 2}$, from $\mathrm{x}=0$ to $\mathrm{x}=3$.
20.	Evaluate the iterated integral: $\int_{1}^{2} \int_{0}^{4} 2 x y d y d x$
[C]	5 - Marks Questions
1.	Find the volume of the region bounded above by the parabolic $z=x^{2}+y^{2}$ and below by the square R : $-1 \leq x \leq 1,-1 \leq y \leq 1$.
2.	Find the volume of the region bounded above by the paraboloid $z=x^{2}+y^{2}$ and below by the triangle enclosed by the lines $y=x, x=0$, and $x+y=2$ in xy-plane.
3.	Evaluate the integrals. $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}+z^{2}\right) d z d y d x$
4.	Find the volume of the region bounded above by the parabolic $\mathrm{z}=16-\mathrm{x}^{2}+\mathrm{y}^{2}$ and

DEPARTMENT OF MATHEMATICS

Semester-I: 060090105-CC1 Differential and Integral Calculus

	below by the square R: $0 \leq x \leq 2,0 \leq y \leq 2$.
5.	Evaluate the integrals. $\int_{-1}^{1} \int_{0}^{1} \int_{0}^{2}(x+y+z) d z d y d x$
6.	Find the center of mass of thin plate of density $\delta=3$ bounded by the lines $\mathrm{x}=0, \mathrm{y}=\mathrm{x}$, and the parabola $\mathrm{y}=2-\mathrm{x}^{2}$ in the first quadrant.
7.	Find the volume of the region bounded above by the parabolic $\mathrm{z}=2-\mathrm{x}-\mathrm{y}$ and below by the square R: $0 \leq x \leq 1,0 \leq y \leq 1$.
8.	Evaluate the integrals. $\int_{0}^{\ln 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} d z d y d x$
9.	Find the centroid of region in the first quadrant bounded by the x-axis, the parabola $y^{2}=2 x$, and the line $x+y=4$.
10.	Find the volume of the region bounded above by the parabolic $\mathrm{z}=\mathrm{y} / 2$ and below by the rectangle $\mathrm{R}: 0 \leq x \leq 4,0 \leq y \leq 2$.
11.	Find the volume of the region bounded above by the cylinder $\mathrm{z}=\mathrm{x}^{2}$ and below by the triangle enclosed by the parabola $y=2-x^{2}$, and line $y=x$ in $x y$-plane.
12.	Find the centroid of the triangular region cut from the first quadrant by the line $x+y$ $=3$.
13.	Find the volume of the region bounded above by the parabolic $\mathrm{z}=2 \sin x c o s y$ and below by the rectangle $\mathrm{R}: 0 \leq x \leq \pi / 2,0 \leq y \leq \pi / 4$.
14.	Evaluate the integrals. $\int_{0}^{\pi / 6} \int_{0}^{1} \int_{-2}^{3} y \sin z d x d y d z$
15.	Find the centroid of region cut from the first quadrant by the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$.
16.	Find the volume of the region bounded above by the parabolic $\mathrm{z}=4-\mathrm{y}^{2}$ and below by the rectangle R: $0 \leq x \leq 1,0 \leq y \leq 2$.
17.	Find the volume of the regions between the plane $x+y+2 z=2$ and $2 x+2 y+z=4$ in the first octant.
18.	Find the centroid of the region between the x - axis and the arch $\mathrm{y}=\sin \mathrm{x}, 0 \leq x \leq \pi$.
19.	Find the volume of the region bounded above by the parabolic $\mathrm{z}=6 \mathrm{y}^{2}-2 \mathrm{x}$ and below by the rectangle R: $0 \leq x \leq 1,0 \leq y \leq 2$.
20.	Find the volume of the solid whose base is the region in xy-plane that is bounded by the parabola $y=4-x^{2}$ and the line $y=3 x$, while the top of solid is bounded by the plane $\mathrm{z}=\mathrm{x}+4$.
21.	Find the mass of the thin plate occupying the smaller region cut from the ellipse $\mathrm{x}^{2}+$ $4 \mathrm{y}^{2}=12$ by the parabola $\mathrm{x}=4 \mathrm{y}^{2}$ if $\delta(x, y)=5 \mathrm{x}$.
22.	Find the volume of the region bounded above by the parabolic $\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}$ and below by the rectangle $\mathrm{R}: 1 \leq x \leq 2,0 \leq y \leq 1$.
23.	Find the volume of the finite region bounded by the planes $z=x, x+z=8, z=y, y=8$ and $\mathrm{z}=0$.
24.	Find center of mass of thin triangular plate bounded by the y -axis and the lines $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=2-\mathrm{x}$ if $\delta(x, y)=6 \mathrm{x}+3 \mathrm{y}+3$.
25.	Find the volume of the region bounded above by the parabolic $\mathrm{z}=\mathrm{y} \sin (\mathrm{x}+\mathrm{y})$ and below by the rectangle R: $-\pi \leq x \leq 0,0 \leq y \leq \pi$.
26.	Find the volume of the portion of the cylinder $x^{2}+y^{2}=1$ intercepted between the plane $\mathrm{z}=0$ and the paraboloid $\mathrm{x}^{2}+\mathrm{y}^{2}=4-\mathrm{z}$.
27.	Evaluate the integrals. $\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} d z d y d x$
28.	Find the volume of the region bounded above by the parabolic $\mathrm{z}=1 /(\mathrm{x}+\mathrm{y})^{2}$ and below by the rectangle $\mathrm{R}: 1 \leq x \leq 2,3 \leq y \leq 4$.
29.	Find the volume of the solid in the first octant bounded by the coordinate planes, the plane $\mathrm{x}=3$ and the parabolic cylinder $\mathrm{z}=4-\mathrm{y}^{2}$.

30. Evaluate the integrals. $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{4-x^{2}-y} x d z d y d x$
